FZU2176(二维线段树+dfs)
传送门:easy problem
题意:给定一棵n个节点以1为根的树,初始每个节点的值为0,现在我们要在树上进行一些操作,操作有两种类型。
1 x val 表示对以x为根的子树的每个点进行加权操作(我们定义每个节点的深度为每个节点到根1的距离),如果 y是以x为根的子树中的点那么 y节点的权值增加 ((dep[y]-dep[x])%k+1)*val 其中dep[y]表示y节点的深度,k为一个常数(1<=k<=5)
2 x 查询当前x节点的权值。
分析:这题用树链剖分有点大材小用,直接一个dfs将每点遍历完又回到该点重新标号映射到线段树上,然后每修改该点及它的子节点时在线段树上操作。由题意可发现,每隔k个深度权值增加是一样的,而k又很小,因此用k棵线段树分别维护整段区间内深度模k的点余x(0<x<k)的点,然后修改区间时分别给区间内模k为0,1...k-1的点修改,也就是给k棵线段树进行区间修改。
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 100000000
#define inf 0x3f3f3f3f
#define eps 1e-6
#define N 50010
#define FILL(a,b) (memset(a,b,sizeof(a)))
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define PII pair<int,int>
using namespace std;
struct edge
{
int v,next;
edge(){}
edge(int v,int next):v(v),next(next){}
}e[N];
int head[N],vis[N],tot;
int col[][N<<],num;
int st[N],ed[N],dep[N];
int n,m,k;
void init()
{
FILL(head,-);
FILL(vis,);
tot=;
}
void addedge(int u,int v)
{
e[tot]=edge(v,head[u]);
head[u]=tot++;
}
void dfs(int u,int fa)
{
st[u]=++num;
for(int i=head[u];~i;i=e[i].next)
{
int v=e[i].v;
dep[v]=dep[u]+;
dfs(v,u);
}
ed[u]=num;
}
void build(int l,int r,int rt)
{
for(int i=;i<k;i++)col[i][rt]=;
if(l==r)return;
int m=(l+r)>>;
build(lson);
build(rson);
}
void Pushdown(int rt)
{
for(int i=;i<k;i++)
if(col[i][rt])
{
col[i][rt<<]+=col[i][rt];
col[i][rt<<|]+=col[i][rt];
col[i][rt]=;
}
}
void update(int L,int R,int s,int c,int l,int r,int rt)
{
if(L<=l&&r<=R)
{
col[s][rt]+=c;
return;
}
Pushdown(rt);
int m=(l+r)>>;
if(L<=m)update(L,R,s,c,lson);
if(m<R)update(L,R,s,c,rson);
}
int query(int pos,int s,int l,int r,int rt)
{
if(l==r)
{
return col[s][rt];
}
Pushdown(rt);
int m=(l+r)>>;
if(pos<=m)return query(pos,s,lson);
else return query(pos,s,rson);
}
int main()
{ int t,a,b,op,cas=;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&m,&k);
init();
for(int i=;i<n;i++)
{
scanf("%d%d",&a,&b);
addedge(a,b);
}
num=;dep[]=;
dfs(,-);
build(,num,);
printf("Case#%d:\n",cas++);
while(m--)
{
scanf("%d",&op);
if(op==)
{
scanf("%d",&a);
printf("%d\n",query(st[a],(dep[a]+)%k,,num,));
}
else
{
scanf("%d%d",&a,&b);
for(int i=;i<k;i++)
{
int s=((dep[a]+)%k+i)%k;
update(st[a],ed[a],s,b*(i+),,num,);
}
}
}
}
}
FZU2176(二维线段树+dfs)的更多相关文章
- UVA 11297 线段树套线段树(二维线段树)
题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要 不同的处理方式,非叶子形成的 ...
- POJ2155 Matrix二维线段树经典题
题目链接 二维树状数组 #include<iostream> #include<math.h> #include<algorithm> #include<st ...
- HDU 1823 Luck and Love(二维线段树)
之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...
- poj 2155:Matrix(二维线段树,矩阵取反,好题)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 17880 Accepted: 6709 Descripti ...
- poj 1195:Mobile phones(二维线段树,矩阵求和)
Mobile phones Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 14391 Accepted: 6685 De ...
- POJ 2155 Matrix (二维线段树)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 17226 Accepted: 6461 Descripti ...
- HDU 4819 Mosaic (二维线段树)
Mosaic Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others)Total S ...
- HDU 4819 Mosaic --二维线段树(树套树)
题意: 给一个矩阵,每次查询一个子矩阵内的最大最小值,然后更新子矩阵中心点为(Max+Min)/2. 解法: 由于是矩阵,且要求区间最大最小和更新单点,很容易想到二维的线段树,可是因为之前没写过二维的 ...
- HDU 4819 Mosaic(13年长春现场 二维线段树)
HDU 4819 Mosaic 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4819 题意:给定一个n*n的矩阵,每次给定一个子矩阵区域(x,y,l) ...
随机推荐
- 通过cmd命令到ftp上下载文件
通过cmd命令到ftp上下载文件 点击"开始"菜单.然后输入"cmd"点"enter"键,出现cmd命令执行框 2 输入"ftp& ...
- 四个流行的Java连接池之Proxool篇
Proxool是一个JavaSQL Driver驱动程序,提供了对你选择的其它类型的驱动程序的连接池封装.可以非常简单的移植到现存的代码中.完全可配置.快速,成熟,健壮.可以透明地为你现存的JDBC驱 ...
- 学习笔记之NodeJs基本操作
nodejs安装见文章:windows下安装node.js及less 运行js文件:node xxx.js 调用http模块,并指定端口为3000,向客户端输出<h1>Node.js< ...
- Android SurfaceView实战 打造抽奖转盘
转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/41722441 ,本文出自:[张鸿洋的博客] 1.概述 今天给大家带来Surfac ...
- 管理集群中的 crs 管理员
管理集群中的 crs 管理员 oracle Managing CRS Administrators in the Cluster Use the following commands to ma ...
- sql: oracle, for update和for update nowait的区别
1. oracle for update和for update nowait的区别 http://www.cnblogs.com/quanweiru/archive/2012/11/09/276222 ...
- 认识axure组件区域
组件区域也叫做部件区域,英文为widgets,还有人称之为控件区域,组件是axure事先准备好的网站项目常用的零件,比如一些基本的页面元素 Axure默认存在2个组件库,分别为线框图和流程图.同时我们 ...
- SpringMVC记住密码功能
CookieTool (Cookie帮助类): package com.utcsoft.common.cookie; import java.util.HashMap; import java.uti ...
- 52. 模版和设计元素——Lotus Notes的代码重用
不论是理论上还是实用上,代码重用都是编程的一个重要议题.可以从两个角度来讨论代码重用. 一是逻辑上代码以怎样的方式被重用.既可以通过面向对象的思想普及以来耳熟能详的继承的方式.比如先建了一个车的基类, ...
- Jsp中使用数据库连接池.
原文 Jsp中使用数据库连接池. 1. 在tomcat服务器目录下面的conf中找到一个叫Context.xml的配置文件,在其中加入以下代码 <Resource name="jdbc ...