Lorenzo Von Matterhorn
Lorenzo Von Matterhorn
Barney lives in NYC. NYC has infinite number of intersections numbered with positive integers starting from 1. There exists a bidirectional road between intersections i and 2i and another road between i and 2i + 1 for every positive integer i. You can clearly see that there exists a unique shortest path between any two intersections.

Initially anyone can pass any road for free. But since SlapsGiving is ahead of us, there will q consecutive events happen soon. There are two types of events:
1. Government makes a new rule. A rule can be denoted by integers v, u and w. As the result of this action, the passing fee of all roads on the shortest path from u to v increases by w dollars.
2. Barney starts moving from some intersection v and goes to intersection u where there's a girl he wants to cuddle (using his fake name Lorenzo Von Matterhorn). He always uses the shortest path (visiting minimum number of intersections or roads) between two intersections.
Government needs your calculations. For each time Barney goes to cuddle a girl, you need to tell the government how much money he should pay (sum of passing fee of all roads he passes).
The first line of input contains a single integer q (1 ≤ q ≤ 1 000).
The next q lines contain the information about the events in chronological order. Each event is described in form 1 v u w if it's an event when government makes a new rule about increasing the passing fee of all roads on the shortest path from u to v by w dollars, or in form 2 v u if it's an event when Barnie goes to cuddle from the intersection v to the intersection u.
1 ≤ v, u ≤ 1018, v ≠ u, 1 ≤ w ≤ 109 states for every description line.
For each event of second type print the sum of passing fee of all roads Barney passes in this event, in one line. Print the answers in chronological order of corresponding events.
7
1 3 4 30
1 4 1 2
1 3 6 8
2 4 3
1 6 1 40
2 3 7
2 2 4
94
0
32
In the example testcase:
Here are the intersections used:
- Intersections on the path are 3, 1, 2 and 4.
- Intersections on the path are 4, 2 and 1.
- Intersections on the path are only 3 and 6.
- Intersections on the path are 4, 2, 1 and 3. Passing fee of roads on the path are 32, 32 and 30 in order. So answer equals to 32 + 32 + 30 = 94.
- Intersections on the path are 6, 3 and 1.
- Intersections on the path are 3 and 7. Passing fee of the road between them is 0.
- Intersections on the path are 2 and 4. Passing fee of the road between them is 32 (increased by 30 in the first event and by 2 in the second).
分析:这种二叉树两节点的最短路径是先找到最近公共祖先(LCA),然后就是分别从当前节点到祖先的路径;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#include <ext/rope>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define vi vector<int>
#define pii pair<int,int>
#define mod 1000000007
#define inf 0x3f3f3f3f
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
const int maxn=1e5+;
const int dis[][]={{,},{-,},{,-},{,}};
using namespace std;
using namespace __gnu_cxx;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
int n,m;
map<ll,ll>p;
ll a[],fa,fb,ans;
int main()
{
int i,j,k,t;
scanf("%d",&t);
while(t--)
{
scanf("%lld",&a[]);
if(a[]==)
{
rep(i,,)scanf("%lld",&a[i]);
fa=a[],fb=a[];
while(fa!=fb)
{
if(fa<fb)p[fb]+=a[],fb>>=;
else p[fa]+=a[],fa>>=;
}
}
else
{
rep(i,,)scanf("%lld",&a[i]);
ans=0LL;
fa=a[],fb=a[];
while(fa!=fb)
{
if(fa<fb)ans+=p[fb],fb>>=;
else ans+=p[fa],fa>>=;
}
printf("%lld\n",ans);
}
}
//system ("pause");
return ;
}
Lorenzo Von Matterhorn的更多相关文章
- C. Lorenzo Von Matterhorn LCA
C. Lorenzo Von Matterhorn time limit per test 1 second memory limit per test 256 megabytes input sta ...
- #map+LCA# Codeforces Round #362 (Div. 2)-C. Lorenzo Von Matterhorn
2018-03-16 http://codeforces.com/problemset/problem/697/C C. Lorenzo Von Matterhorn time limit per t ...
- Lorenzo Von Matterhorn(STL_map的应用)
Lorenzo Von Matterhorn time limit per test 1 second memory limit per test 256 megabytes input standa ...
- codeforces 696A A. Lorenzo Von Matterhorn(水题)
题目链接: A. Lorenzo Von Matterhorn time limit per test 1 second memory limit per test 256 megabytes inp ...
- CodeForces 696A:Lorenzo Von Matterhorn(map的用法)
http://codeforces.com/contest/697/problem/C C. Lorenzo Von Matterhorn time limit per test 1 second m ...
- CF 696 A Lorenzo Von Matterhorn(二叉树,map)
原题链接:http://codeforces.com/contest/696/problem/A 原题描述: Lorenzo Von Matterhorn Barney lives in NYC. ...
- A. Lorenzo Von Matterhorn
A. Lorenzo Von Matterhorn time limit per test 1 second memory limit per test 256 megabytes input sta ...
- 【CodeForces 697C】Lorenzo Von Matterhorn(LCA)
Least Common Ancestors 节点范围是1~1e18,至多1000次询问. 只要不断让深的节点退一层(>>1)就能到达LCA. 用点来存边权,用map储存节点和父亲连边的权 ...
- codeforces 696A Lorenzo Von Matterhorn 水题
这题一眼看就是水题,map随便计 然后我之所以发这个题解,是因为我用了log2()这个函数判断在哪一层 我只能说我真是太傻逼了,这个函数以前听人说有精度问题,还慢,为了图快用的,没想到被坑惨了,以后尽 ...
随机推荐
- Google Developing for Android 学习总结
避免在循环中使用内存 也可理解为在循环中尽可能少创建对象,自定义控件避免在ondraw里面频繁创建paint对象. 尽可能避免内存分配 对象缓存: 常量通过类级别或者静态来进行缓存. 对象池: 同 ...
- Spring的后置处理器BeanPostProcessor
一.BeanPostProcessor接口的作用 如果我们需要在Spring容器完成Bean的实例化.配置和其他的初始化前后添加一些自己的逻辑处理,我们就可以定义一个或者多个BeanPostProce ...
- scanf函数与scanf_s函数
ANSI C中没有scanf_s(),只有scanf(),scanf()在读取时不检查边界,所以可能会造成内存泄露.所以vc++2005/2008中提供了scanf_s(),在最新的VS2013中也提 ...
- Linux系统采用netstat命令查看DDOS攻击的方法
Linux系统采用netstat命令查看DDOS攻击的方法 来源:互联网 作者:佚名 时间:07-05 15:10:21 [大 中 小] 这篇文章主要为大家介绍了Linux系统采用netstat命令查 ...
- 第六节,初识python和字符编码
程序语言的发展 机器语言 程序语言,最初的计算机语言是机器语言,完全是0和1组成的二进制串 如:01010101 11010101 汇编语言 因为01010101的字符串,冗长,不利于维护,所以产生 ...
- js 数组切换图片
<html> <head> <meta charset="utf-8" /> <title></title> <s ...
- Tomcat目录下文件详解
一.Tomcat背景 (转) 自从JSP发布之后,推出了各式各样的JSP引擎.Apache Group在完成GNUJSP1.0的开发以后,开始考虑在SUN的JSWDK基础上开发一个可以直接提供We ...
- hdu_3001_Travelling(状压DP)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=3001 题意:给你N个点,M条边,每个点最多走两次,问走完N个点最短的路程为多少. 题解:注意这题有重边 ...
- OpenCV ——双线性插值(Bilinear interpolation)
1,原理 在图像的仿射变换中,很多地方需要用到插值运算,常见的插值运算包括最邻近插值,双线性插值,双三次插值,兰索思插值等方法,OpenCV提供了很多方法,其中,双线性插值由于折中的插值效果和运算速度 ...
- Zabbix3.0 客户端搭建
zabbix客户端安装 我们这边使用编译安装 软件包版本 zabbix-3.0.3.tar.gz 添加用户组 #groupadd zabbix #useradd -s /sbin/nologin -g ...