数据结构之Huffman树与最优二叉树
最近在翻炒一些关于树的知识,发现一个比较有意思的二叉树,huffman树,对应到离散数学中的一种名为最优二叉树的路径结构,而Huffman的主要作用,最终可以归结到一种名为huffman编码的编码方式,使用huffman编码方式,我们可以以平均长度最短的码字来记录一串信息,且每个信息分子的编码唯一,独立。从而最终合成编码所对应的信息唯一,无歧义。
huffman树的创建时基于每个信息分子都拥有其权重,权重越大,越靠近树根,即路径越短,
下面我们我们来以一个huffman树的例子为例:简单引入一下huffman树:

上图即是构造huffman编码所必备的元素,那么,通过上图中的信息分子与对应编码,我们就可以写出编码解析结果唯一且无歧义的编码串 如:
001011110100111 CDGFH
000111110010 CHEF
huffman编码的任何组合方式都只可能对应一串信息,不可能有歧义出现。 因为在huffman树中,每一个信息元都是一个叶子节点。。。
期huffman树形结果为:

圆圈中的数字表示权重,我们规定向左为0 向右为1 ,, 即的到上面表格中的huffman编码,通过上图中的树,我们不难算出树的权
W(T)为291651 必为所有的由这些信息元组合成的树中的权的最小值,当然,组合方式有可能不一样,但最终的权,只会大于或等于他,即不存在与权值相等且为最小权值的非同构的两颗树。
如何创建这个huffman树(最优二叉树)呢,这才是我们今天的关键。
首先我们需要明确一样东西,基于信息元所创建的huffman树的节点个数是否确定,答案是肯定的,如果在一开始我们所要创建的数据结构的长度是确定的话,那么我觉得我们有很大的必要选择数组了。
数组的长度:m = 信息元个数n * 2 - 1; 即我们需要n个单元存放信息元节点,n-1的单元来存放分支点(内点和根节点)。
数组单元的数据结构(不考虑信息元数据):

由于树的存储结构是用数组实现的,故parent,rchild,lchild中直接保存数组下标即可。
一切都具备好了,那哥们儿几个就来初始化一下这棵树把(以上面的例子为例):
(初始状态,还未进行建树):

建树动作完成之后:

咦,中间的步骤哪里去了呢??? 别急!!!
听我说: 1:寻找数组中单元数据的parent不为零的两个数组元c1 , c2
2:找到他们的父节点father,父节点:数组index递增序列中第一个weight为零的数组元(前提:信息元中不存在weight为零的权)。
3:将父节点的lchild指向c1 和 c2中序号(index)在前面的那个数组单元(即lchild = indexMin(c1,c2).index), rchild则等于另一个的index,将c1和c2的parent都指向找到的父节点,即c1/c2.parent = father.index。同时c1和c2的权之和赋给father的weight(权)
4:重复1,2,3,直到左右数组单元的weight都被数据化(赋值)。
代码如下:
void HuffmanCoding(HuffmanTree *HT,int *w,int n)
{ /*w为权值数组,n为信息元个数*/
int m,i,s1,s2;
HuffmanTree p;
char *cd;
if(n<=)
return;
m=*n-;
*HT=(HuffmanTree)malloc((m+)*sizeof(HTNode)); /* 0号单元未用 */
for(p=*HT+,i=;i<=n;++i,++p,++w) //parent lcahid rchild全部初始化为零
{
(*p).weight=*w;
(*p).parent=;
(*p).lchild=;
(*p).rchild=;
}
for(;i<=m;++i,++p)
(*p).parent=;
for(i=n+;i<=m;++i) /* 建赫夫曼树 */
{ /* 在HT[1~i-1]中选择parent为0且weight最小的两个结点,其序号分别为s1和s2 */
select(*HT,i-,&s1,&s2);
(*HT)[s1].parent=(*HT)[s2].parent=i;
(*HT)[i].lchild=s1;
(*HT)[i].rchild=s2;
(*HT)[i].weight=(*HT)[s1].weight+(*HT)[s2].weight;
}
}
那么,最终的huffman编码如何实现,以及我们如何起实现反编码(从编码得到信息),笔者将会最今后的日子里进行探讨(没时间啦啦),阿里亚瑟哦,觉得不错的话,记得点赞哦。
数据结构之Huffman树与最优二叉树的更多相关文章
- 数据结构-二叉树(6)哈夫曼树(Huffman树)/最优二叉树
树的路径长度是从树根到每一个结点的路径长度(经过的边数)之和. n个结点的一般二叉树,为完全二叉树时取最小路径长度PL=0+1+1+2+2+2+2+… 带权路径长度=根结点到任意结点的路径长度*该结点 ...
- Huffman树与最优二叉树续
OK,昨天我们对huffman数的基本知识,以及huffman树的创建做了一些简介,http://www.cnblogs.com/Frank-C/p/5017430.html 今天接着聊: huffm ...
- 哈夫曼树【最优二叉树】【Huffman】
[转载]只为让价值共享,如有侵权敬请见谅! 一.哈夫曼树的概念和定义 什么是哈夫曼树? 让我们先举一个例子. 判定树: 在很多问题的处理过程中,需要进行大量的条件判断,这些判断结构的设 ...
- 【数据结构】Huffman树
参照书上写的Huffman树的代码 结构用的是线性存储的结构 不是二叉链表 里面要用到查找最小和第二小 理论上锦标赛法比较好 但是实现好麻烦啊 考虑到数据量不是很大 就直接用比较笨的先找最小 去掉最小 ...
- 数据结构与算法(周鹏-未出版)-第六章 树-6.5 Huffman 树
6.5 Huffman 树 Huffman 树又称最优树,可以用来构造最优编码,用于信息传输.数据压缩等方面,是一类有着广泛应用的二叉树. 6.5.1 二叉编码树 在计算机系统中,符号数据在处理之前首 ...
- [数据结构与算法]哈夫曼(Huffman)树与哈夫曼编码
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...
- HUFFMAN 树
在一般的数据结构的书中,树的那章后面,著者一般都会介绍一下哈夫曼(HUFFMAN) 树和哈夫曼编码.哈夫曼编码是哈夫曼树的一个应用.哈夫曼编码应用广泛,如 JPEG中就应用了哈夫曼编码. 首先介绍什么 ...
- Huffman树及其应用
哈夫曼树又称为最优二叉树,哈夫曼树的一个最主要的应用就是哈夫曼编码,本文通过简单的问题举例阐释哈夫曼编码的由来,并用哈夫曼树的方法构造哈夫曼编码,最终解决问题来更好的认识哈夫曼树的应用--哈夫曼编码. ...
- Huffman树的构造及编码与译码的实现
哈夫曼树介绍 哈夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树.所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数) ...
随机推荐
- Reveal:分析iOS UI该武器
Reveal是分析iOS应用UI的利器: Reveal可以在执行时调试和改动iOS应用程序.它能连接到应用程序,并同意开发人员编辑各种用户界面參数.这反过来会马上反应在程序的UI上.就像用FireBu ...
- Android - 和其他APP交互 - 把用户带到其他app
Android的重要功能之一就是app可以根据要执行的操作让用户启动另外一个app.例如,app有一个商业地址然后想要在地图上显示,并不需要在app中加一个显示地图的activity,可以直接用Int ...
- Excel一项研究指出色彩
Excel一项研究指出色彩 从Office2007跳到了2013版本号,尽管有着种种不适,但应该承认Excel2013版本号在图表和色彩上更加人性化和"专业"了一些. 但假设须要更 ...
- 开源通讯组件ec
跨平台开源通讯组件elastic communication elastic communication是基于c#开发支持.net和mono的通讯组件(简称EC),EC的主要目的简化mono和.net ...
- HDU 3415 Max Sum of Max-K-sub-sequence(单调队列)
转载请注明出处:http://blog.csdn.net/u012860063 Max Sum of Max-K-sub-sequence Time Limit: 2000/1000 MS (Java ...
- Visual Studio中开发
如何在Visual Studio中开发自己的代码生成器插件 Visual Studio是美国微软公司开发的一个基本完整的开发工具集,它包括了整个软件生命周期中所需要的大部分工具,如UML工具.代 ...
- DuiVision开发教程(15)-DUI文本控制基础类
CControlBaseFont类是DuiVision支持所有基类的控件的文本属性. 此控件例如属性列表,下面: 物业名称 类型 说明 title 字符串 控件的显示标题 font 字体 控件的字体, ...
- SQL Server AlwaysOn中的几个误区
原文:SQL Server AlwaysOn中的几个误区 AlwaysOn自SQL Server2012之后已经发布很久了,最近我在给一些客户做咨询的时候经常被问起是不是应该使用AlwaysOn,从客 ...
- 第十二章——SQLServer统计信息(4)——在过滤索引上的统计信息
原文:第十二章--SQLServer统计信息(4)--在过滤索引上的统计信息 前言: 从2008开始,引入了一个增强非聚集索引的新功能--过滤索引(filter index),可以使用带有where条 ...
- 为RadComboBox添加SelectionChanging事件
代码非标准,仅供参考. using System; using System.Collections.Generic; using System.Linq; using System.Windows. ...