hdu4496 D-City(扭转和支票托收啊 )
主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4496
D-City
One day Luxer went to D-city. D-city has N D-points and M D-lines. Each D-line connects exactly two D-points. Luxer will destroy all the D-lines. The mayor of D-city wants to know how many connected blocks of D-city left after Luxer destroying the first K D-lines
in the input.
Two points are in the same connected blocks if and only if they connect to each other directly or indirectly.
Then following M lines each containing 2 space-separated integers u and v, which denotes an D-line.
Constraints:
0 < N <= 10000
0 < M <= 100000
0 <= u, v < N.
5 10
0 1
1 2
1 3
1 4
0 2
2 3
0 4
0 3
3 4
2 4
1
1
1
2
2
2
2
3
4
5HintThe graph given in sample input is a complete graph, that each pair of vertex has an edge connecting them, so there's only 1 connected block at first.
The first 3 lines of output are 1s because after deleting the first 3 edges of the graph, all vertexes still connected together.
But after deleting the first 4 edges of the graph, vertex 1 will be disconnected with other vertex, and it became an independent connected block.
Continue deleting edges the disconnected blocks increased and finally it will became the number of vertex, so the last output should always be N.
试试,生活亦是如此)。
向的时候去掉当中某条边的,独立的点不一定会增多(去掉这条边后还有
其它边间接的相连)。所以当我们逆向思考的时候,仅仅会在添加某一条边
时降低独立的点(也就是联通的点增多),这样仅仅会在他之后才会有可能
有某条边的操作是“无效”的(联通的点不变);
#include <cstdio>
#include <cstring>
const int maxn = 100017;
int father[maxn];
int findd(int x)
{
//return x==father[x] ? x : father[x]=findd(father[x]);
if(father[x] == -1)
{
return x;
}
return father[x] = findd(father[x]);
}
int main()
{
int n, m;
while(~scanf("%d%d",&n,&m))
{
for(int i = 0; i < n; i++)
{
father[i] = -1;
} int a[maxn], b[maxn], ans[maxn]; for(int i = 1; i <= m; i++)
{
scanf("%d%d",&a[i],&b[i]);
}
ans[m] = n;
for(int i = m; i > 1; i--)
{
int u, v;
//scanf("%d%d",&u,&v);
int f1 = findd(a[i]);
int f2 = findd(b[i]);
//printf("f1:%d f2:%d\n",f1,f2);
if(f1 != f2)
{
ans[i-1] = ans[i]-1;
father[f1] = f2;
}
else
{
ans[i-1] = ans[i];
}
}
for(int i = 1; i <= m; i++)
{
printf("%d\n",ans[i]);
}
}
return 0;
}
版权声明:本文博客原创文章,博客,未经同意,不得转载。
hdu4496 D-City(扭转和支票托收啊 )的更多相关文章
- UVALive 4730 Kingdom +段树和支票托收
主题链接:点击打开链接 题意见白书P248 思路: 先把读入的y值都扩大2倍变成整数 然后离散化一下 用线段树来维护y轴 区间上每一个点的 城市数量和联通块数量. 然后用并查集维护每一个联通块及联通块 ...
- EasyPR--开发详解(5)颜色定位与偏斜扭转
本篇文章介绍EasyPR里新的定位功能:颜色定位与偏斜扭正.希望这篇文档可以帮助开发者与使用者更好的理解EasyPR的设计思想. 让我们先看一下示例图片,这幅图片中的车牌通过颜色的定位法进行定位并从偏 ...
- BZOJ 2001: [Hnoi2010]City 城市建设
2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1132 Solved: 555[Submit][ ...
- History lives on in this distinguished Polish city II 2017/1/5
原文 Some fresh air After your time underground,you can return to ground level or maybe even a little ...
- History lives on in this distinguished Polish city 2017/1/4
原文 History lives on in this distinguished Polish city Though it may be ancient. KraKow, Poland, is a ...
- #1094 : Lost in the City
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Little Hi gets lost in the city. He does not know where he is ...
- GeoIP Legacy City数据库安装说明
Here is a brief outline of the steps needed to install GeoIP Legacy City on Linux/Unix. The installa ...
- [POJ3277]City Horizon
[POJ3277]City Horizon 试题描述 Farmer John has taken his cows on a trip to the city! As the sun sets, th ...
- 2015年第8本(英文第7本):the city of ember 微光城市
书名:the City of Ember(中文名:微光城市) 作者:Jeanne DuPrau 单词数:6.2万 不重复单词数:未知 首万词不重复单词数:未知 蓝思值:未知 阅读时间:2015年4月2 ...
随机推荐
- 2014百度之星第三题Xor Sum(字典树+异或运算)
Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others) Total ...
- hdu 1251 字典树模板题 ---多串 查找单词出现次数
这道题题目里没有给定数据范围 我开了2005 疯狂的WA 然后开了50000, A掉 我以为自己模板理解错 然后一天没吃饭,饿得胃疼还是想着把这题A掉再去吃,谁知竟然是这样的问题,,,呵呵~~~ ...
- 异构数据库迁移 db2---oracle
异构数据库迁移 其他数据库迁移到oracle,以移植db2数据库对象到Oracle的操作说明为例,其他数据库迁移到oracle类似. 移植之平台和相关工具 OS:linux DBMS:db2 Ora ...
- 一个css和js结合的下拉菜单,支持主流浏览器
首先声明: 本人尽管在web前端岗位干了好多年,但无奈岗位对技术要求不高.html,css用的比較多,JavaScript自己原创的非常少,基本都是copy改动,所以自己真正动手写时,发现基础非常不坚 ...
- [Unity3D]Unity3D持久性数据的游戏开发PlayerPrefs采用
大家好,我是秦培,欢迎关注我的博客,我的博客地址">blog.csdn.net/qinyuanpei. 博主今天研究了在Unity3D中的数据持久化问题.数据持久化在不论什么一个开发领 ...
- php判断变量是否存在
isset— 检测变量是否设置, isset() 只能用于变量,因为传递任何其它参数都将造成解析错误.若想检测常量是否已设置,可使用 defined() 函数. 如果已经使用 unset() 释放了一 ...
- Java EE (9) -- JDBC & JTA
Connection接口中定义了5中隔离级别常量 Connection.TRANSACTION_NONE -- 不支持事务 Connection.TRANSACTION_READ_UNCOMMIT ...
- 使用JustDecompile修改程序集
原文:使用JustDecompile修改程序集 JustDecompile是Telerik公司推出一个免费的.net反编译工具,支持插件,与Visual Studio 2010,2012 ...
- 经典排序算法 - 高速排序Quick sort
经典排序算法 - 高速排序Quick sort 原理,通过一趟扫描将要排序的数据切割成独立的两部分,当中一部分的全部数据都比另外一部分的全部数据都要小,然后再按此方法对这两部分数据分别进行高速排序,整 ...
- SSH三作品的框架和流程
Hibernate工作的,为什么? 原理: 1.通过Configuration().configure();读取并解析hibernate.cfg.xml配置文件 2.由hibernate.cfg.xm ...