杨辉三角形II(Pascal's Triangle II)

问题

给出一个索引k,返回杨辉三角形的第k行。

例如,给出k = 3,返回[1, 3, 3, 1]

注意:

你可以优化你的算法使之只使用O(k)的额外空间吗?

初始思路

首先来复习复习杨辉三角形的性质(来自wiki):

  1. 杨辉三角以正整数构成,数字左右对称,每行由1开始逐渐变大,然后变小,回到1。
  2. 行的数字个数为个。
  3. 行的第个数字为组合数
  4. 行数字和为
  5. 除每行最左侧与最右侧的数字以外,每个数字等于它的左上方与右上方两个数字之和(也就是说,第行第个数字等于第行的第个数字与第个数字的和)。这是因为有组合恒等式:。可用此性质写出整个杨辉三角形。

看到第2条和5条是不是发现和 [LeetCode 120] - 三角形(Triangle) 中的最终算法有点像?没错,这里可以使用类似的方法得出杨辉三角形中第k行的数据,而且更简单:

  • 第1列和最后1列的数字永远为1
  • 其他列如性质5所述,为上一行纵坐标j-1和纵坐标j的点之和

最终得出的只是用O(k)额外空间的代码如下:

 getRow

1 class Solution {
2 public:
3 std::vector<int> getRow(int rowIndex)
4 {
5 std::vector<int> columnInfo(rowIndex + 1);
6
7 columnInfo[0] = 1;
8
9 if(rowIndex == 0)
10 {
11 return columnInfo;
12 }
13
14 columnInfo[1] = 1;
15
16 for(int i = 1; i < rowIndex + 1; ++i)
17 {
18 for(int j = i; j > 0; --j)
19 {
20 if(j == 0 || j == i)
21 {
22 columnInfo[j] = 1;
23 }
24 else
25 {
26 columnInfo[j] = columnInfo[j - 1] + columnInfo[j];
27 }
28 }
29 }
30
31 return columnInfo;
32 }
33 };

顺利通过Judge Small和Judge Large。

题外

根据杨辉三角形的性质3,我们也可以直接计算某行所有数的值。由于对称性,实际只需要计算前一半的列并将结果拷贝到后一半列即可。但是这种方法的问题是需要计算很大的阶乘,当行数达到一定大小时不做特殊处理就会溢出了。以下是一个示例,没做特殊处理,只是用int64_t保存中间结果。当输入为21时就会溢出了:

 阶乘-有缺陷

1 class SolutionV2 {
2 public:
3 std::vector<int> getRow(int rowIndex)
4 {
5 std::vector<int> columnInfo(rowIndex + 1);
6
7 nFactorial_ = 1;
8
9 for(int i = 1; i <= rowIndex; ++i)
10 {
11 nFactorial_ *= i;
12 }
13
14 columnInfo[0] = 1;
15 columnInfo[rowIndex] = 1;
16
17 for(int i = 1; i <= rowIndex / 2; ++i)
18 {
19 columnInfo[i] = CaculateCombination(rowIndex, i);
20 }
21
22 int left = 1;
23 int right = rowIndex - 1;
24
25 while(left < right)
26 {
27 columnInfo[right] = columnInfo[left];
28 ++left;
29 --right;
30 }
31
32
33 return columnInfo;
34 }
35
36 private:
37 int64_t CaculateCombination(int n, int k)
38 {
39 int64_t kFactorial = 1;
40 int64_t restFactorial = 1;
41
42 for(int i = 1; i <= k; ++i)
43 {
44 kFactorial *= i;
45 }
46
47 for(int i = 1; i <= n - k; ++i)
48 {
49 restFactorial *= i;
50 }
51
52 return nFactorial_ / (kFactorial * restFactorial);
53 }
54
55 int64_t nFactorial_;
56 };
 
 
分类: LeetCode
标签: c++leetcode算法

杨辉三角形II(Pascal's Triangle II)的更多相关文章

  1. [Swift]LeetCode119. 杨辉三角 II | Pascal's Triangle II

    Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note t ...

  2. LeetCode 118:杨辉三角 II Pascal's Triangle II

    公众号:爱写bug(ID:icodebugs) 作者:爱写bug 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. Given a non-negative index k whe ...

  3. 【LeetCode】119. 杨辉三角 II Pascal‘s Triangle II(Python & Java)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题思路 方法一: 空间复杂度 O ( k ∗ ( k + 1 ...

  4. [LeetCode 119] - 杨辉三角形II(Pascal's Triangle II)

    问题 给出一个索引k,返回杨辉三角形的第k行. 例如,给出k = 3,返回[1, 3, 3, 1] 注意: 你可以优化你的算法使之只使用O(k)的额外空间吗? 初始思路 首先来复习复习杨辉三角形的性质 ...

  5. 119 Pascal's Triangle II 帕斯卡三角形 II Pascal's Triangle II

    给定一个索引 k,返回帕斯卡三角形(杨辉三角)的第 k 行.例如,给定 k = 3,则返回 [1, 3, 3, 1].注:你可以优化你的算法到 O(k) 的空间复杂度吗?详见:https://leet ...

  6. 学会从后往前遍历,例 [LeetCode] Pascal's Triangle II,剑指Offer 题4

    当我们需要改变数组的值时,如果从前往后遍历,有时会带来很多麻烦,比如需要插入值,导致数组平移,或者新的值覆盖了旧有的值,但旧有的值依然需要被使用.这种情况下,有时仅仅改变一下数组的遍历方向,就会避免这 ...

  7. 28. Triangle && Pascal's Triangle && Pascal's Triangle II

    Triangle Given a triangle, find the minimum path sum from top to bottom. Each step you may move to a ...

  8. 【LeetCode】118 & 119 - Pascal's Triangle & Pascal's Triangle II

    118 - Pascal's Triangle Given numRows, generate the first numRows of Pascal's triangle. For example, ...

  9. Pascal's Triangle,Pascal's Triangle II

    一.Pascal's Triangle Given numRows, generate the first numRows of Pascal's triangle. For example, giv ...

随机推荐

  1. MySQL引擎的相关知识

    MySQL数 据库引擎取决于MySQL在安装的时候是如何被编译的.要添加一个新的引擎,就必须重新编译MYSQL.在缺省情况下,MYSQL支持三个引 擎:ISAM.MYISAM和HEAP.另外两种类型I ...

  2. 在线Youtube视频下载,修改文本,剪切制作动画的最新方法

    刚刚(减去编写本文章的时间,大概20分钟前吧)在看国外最新技术资讯的时候发现有个方法可以让我们快速去下载Youtube上面的视频,不敢独享,我自己都没有怎么玩就所以立刻post上来广而告之,希望对大家 ...

  3. javascript3

    计算阶乘函数:<script> function factorial(n){ var product=1; while (n>1){ product*=n;//product=pro ...

  4. ASP.NET 5+EntityFramework 7

    爱与恨的抉择:ASP.NET 5+EntityFramework 7   EF7 的纠缠 ASP.NET 5 的无助 忘不了你的好 一开始列出的这个博文大纲,让我想到了很久之前的一篇博文:恋爱虽易,相 ...

  5. 使用SQL Server 2005数据库管理工具 - 初学者系列 - 学习者系列文章

    本文讲述使用SQL Server 2005 Express数据库管理工具的使用. 1.打开数据库管理工具 2.选择下面的SQL Server 身份验证,因为在安装数据库的时候设置了sa的密码. 3.选 ...

  6. Andorid类似Fragment更换布置方法

    public void replaceRightView(View v) { int f = LinearLayout.LayoutParams.MATCH_PARENT; LinearLayout. ...

  7. c#下载文件案例

    public static void HttpDown(string fileName, System.Web.UI.Page p_Page,string floder) { string path ...

  8. Ubuntu(Linux) + mono + jexus +asp.net MVC3

    Ubuntu(Linux) + mono + jexus +asp.net MVC3 部署 感谢  张善友 的建议,我把 微信订餐  由nginx 改成 jexus,目前运行状况来说,确实稳定了很多, ...

  9. [QT Creator]LNK1123: 转换到 COFF 期间失败: 文件无效或损坏 。

    这个问题很恶心!网上说的原因是因为安装了多了版本的VS.在高版本的2010和2012上都会有问题,解决方法是使用visual studio 2008安装目录下的一个文件替代vs2010安装目录下的文件 ...

  10. 实现基本的CRUD功能

    文] 使用 MVC 5 的 EF6 Code First 入门 系列:实现基本的CRUD功能 2014-04-28 16:29 by Bce, 428 阅读, 0 评论, 收藏, 编辑 英文渣水平,大 ...