杨辉三角形II(Pascal's Triangle II)

问题

给出一个索引k,返回杨辉三角形的第k行。

例如,给出k = 3,返回[1, 3, 3, 1]

注意:

你可以优化你的算法使之只使用O(k)的额外空间吗?

初始思路

首先来复习复习杨辉三角形的性质(来自wiki):

  1. 杨辉三角以正整数构成,数字左右对称,每行由1开始逐渐变大,然后变小,回到1。
  2. 行的数字个数为个。
  3. 行的第个数字为组合数
  4. 行数字和为
  5. 除每行最左侧与最右侧的数字以外,每个数字等于它的左上方与右上方两个数字之和(也就是说,第行第个数字等于第行的第个数字与第个数字的和)。这是因为有组合恒等式:。可用此性质写出整个杨辉三角形。

看到第2条和5条是不是发现和 [LeetCode 120] - 三角形(Triangle) 中的最终算法有点像?没错,这里可以使用类似的方法得出杨辉三角形中第k行的数据,而且更简单:

  • 第1列和最后1列的数字永远为1
  • 其他列如性质5所述,为上一行纵坐标j-1和纵坐标j的点之和

最终得出的只是用O(k)额外空间的代码如下:

 getRow

1 class Solution {
2 public:
3 std::vector<int> getRow(int rowIndex)
4 {
5 std::vector<int> columnInfo(rowIndex + 1);
6
7 columnInfo[0] = 1;
8
9 if(rowIndex == 0)
10 {
11 return columnInfo;
12 }
13
14 columnInfo[1] = 1;
15
16 for(int i = 1; i < rowIndex + 1; ++i)
17 {
18 for(int j = i; j > 0; --j)
19 {
20 if(j == 0 || j == i)
21 {
22 columnInfo[j] = 1;
23 }
24 else
25 {
26 columnInfo[j] = columnInfo[j - 1] + columnInfo[j];
27 }
28 }
29 }
30
31 return columnInfo;
32 }
33 };

顺利通过Judge Small和Judge Large。

题外

根据杨辉三角形的性质3,我们也可以直接计算某行所有数的值。由于对称性,实际只需要计算前一半的列并将结果拷贝到后一半列即可。但是这种方法的问题是需要计算很大的阶乘,当行数达到一定大小时不做特殊处理就会溢出了。以下是一个示例,没做特殊处理,只是用int64_t保存中间结果。当输入为21时就会溢出了:

 阶乘-有缺陷

1 class SolutionV2 {
2 public:
3 std::vector<int> getRow(int rowIndex)
4 {
5 std::vector<int> columnInfo(rowIndex + 1);
6
7 nFactorial_ = 1;
8
9 for(int i = 1; i <= rowIndex; ++i)
10 {
11 nFactorial_ *= i;
12 }
13
14 columnInfo[0] = 1;
15 columnInfo[rowIndex] = 1;
16
17 for(int i = 1; i <= rowIndex / 2; ++i)
18 {
19 columnInfo[i] = CaculateCombination(rowIndex, i);
20 }
21
22 int left = 1;
23 int right = rowIndex - 1;
24
25 while(left < right)
26 {
27 columnInfo[right] = columnInfo[left];
28 ++left;
29 --right;
30 }
31
32
33 return columnInfo;
34 }
35
36 private:
37 int64_t CaculateCombination(int n, int k)
38 {
39 int64_t kFactorial = 1;
40 int64_t restFactorial = 1;
41
42 for(int i = 1; i <= k; ++i)
43 {
44 kFactorial *= i;
45 }
46
47 for(int i = 1; i <= n - k; ++i)
48 {
49 restFactorial *= i;
50 }
51
52 return nFactorial_ / (kFactorial * restFactorial);
53 }
54
55 int64_t nFactorial_;
56 };
 
 
分类: LeetCode
标签: c++leetcode算法

杨辉三角形II(Pascal's Triangle II)的更多相关文章

  1. [Swift]LeetCode119. 杨辉三角 II | Pascal's Triangle II

    Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note t ...

  2. LeetCode 118:杨辉三角 II Pascal's Triangle II

    公众号:爱写bug(ID:icodebugs) 作者:爱写bug 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. Given a non-negative index k whe ...

  3. 【LeetCode】119. 杨辉三角 II Pascal‘s Triangle II(Python & Java)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题思路 方法一: 空间复杂度 O ( k ∗ ( k + 1 ...

  4. [LeetCode 119] - 杨辉三角形II(Pascal's Triangle II)

    问题 给出一个索引k,返回杨辉三角形的第k行. 例如,给出k = 3,返回[1, 3, 3, 1] 注意: 你可以优化你的算法使之只使用O(k)的额外空间吗? 初始思路 首先来复习复习杨辉三角形的性质 ...

  5. 119 Pascal's Triangle II 帕斯卡三角形 II Pascal's Triangle II

    给定一个索引 k,返回帕斯卡三角形(杨辉三角)的第 k 行.例如,给定 k = 3,则返回 [1, 3, 3, 1].注:你可以优化你的算法到 O(k) 的空间复杂度吗?详见:https://leet ...

  6. 学会从后往前遍历,例 [LeetCode] Pascal's Triangle II,剑指Offer 题4

    当我们需要改变数组的值时,如果从前往后遍历,有时会带来很多麻烦,比如需要插入值,导致数组平移,或者新的值覆盖了旧有的值,但旧有的值依然需要被使用.这种情况下,有时仅仅改变一下数组的遍历方向,就会避免这 ...

  7. 28. Triangle && Pascal's Triangle && Pascal's Triangle II

    Triangle Given a triangle, find the minimum path sum from top to bottom. Each step you may move to a ...

  8. 【LeetCode】118 & 119 - Pascal's Triangle & Pascal's Triangle II

    118 - Pascal's Triangle Given numRows, generate the first numRows of Pascal's triangle. For example, ...

  9. Pascal's Triangle,Pascal's Triangle II

    一.Pascal's Triangle Given numRows, generate the first numRows of Pascal's triangle. For example, giv ...

随机推荐

  1. cocos2d-x3.0之请求网络(phpserver)

    HelloWorldScene.h #ifndef __HELLOWORLD_SCENE_H__ #define __HELLOWORLD_SCENE_H__ #include "cocos ...

  2. 10个实用的PHP正则表达式汇总

    原文 10个实用的PHP正则表达式汇总 正则表达式是程序开发中一个重要的元素,它提供用来描述或匹配文本的字符串,如特定的字符.词或算式等.但在某些情况下,用正则表达式去验证一个字符串比较复杂和费时.本 ...

  3. 自动引用计数(ARC)

    1.1什么是自动引用技术 顾名思义,自动引用计数(ARC, Automatic Reference Counting)是指内存管理中对引用采取自动计数的技术.以下摘自苹果官方说明: 在Objectiv ...

  4. android 使用asm.jar将android手机屏幕投射到电脑

    使用asm.jar将Android手机到电脑屏幕投影 有时候可能须要将手机上的一些操作投影出来,比方一些App Demo的展示等.事实上,有专门的硬件设备能干这件事儿.但不是必需专门为展示个Demo去 ...

  5. 使用OpenCV玩家营造出一个视频控制(没有声音)

    说明:OpenCV计算机视觉库,所以使用的图像或视频处理,因此,没有任何声音在播放视频的临时 软件:使用OpenCV制播放器(无声音) 功能说明:新建播放窗体.加入进度条能够拖动视频播放. 流程图: ...

  6. Java 异常归纳总结

    1.异常的分类 1) Checked exception: 这类异常都是Exception的子类 .异常的向上抛出机制进行处理,如果子类可能产生A异常,那么在父类中也必须throws A异常.可能导致 ...

  7. 1.1 什么是LinQ

    如今,软件应用环境越来越多样化,软件需要处理的数据量也日渐庞大,数据之间的关系日渐复杂.从而带动了存储技术的不断发展,越来越多的数据存储格式被应用到各种软件中. 通常,针对数据的查询是用简单的字符串文 ...

  8. 小贴士——提高PHP程序在NGINX代理服务器的性能

    NGINX本身就是面向最大性能的代理服务器,因此在使用NGINX,并没有性能调整的配置工作.但是却有很多选项可用于定制NGINX的行为,利用底层硬件和操作系统. 下面将介绍用于提供PHP在NGINX的 ...

  9. Hudson安装配置、部署应用及分析

    一.部署环境 机器:一台linux虚机,内存1G,操作系统CentOS release 5.6,硬盘100G. 实验应用:乐学方舟后台部署(非正式环境) 应用环境:apache-tomcat-7.0. ...

  10. QTP知识总结(一)

    QTP知识总结(一) (2010-12-22 16:30:41) 转载▼ 标签: 杂谈 分类: QTP File menu Process guidance management,View > ...