主成分分析的主要目的是希望用较少的变量去解释原来资料中的大部分变异,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量,从而达到降维的目的。在原始数据“预处理”阶段通常要先对它们采用PCA的方法进行降维。本质上讲,PCA就是将高维的数据通过线性变换投影到低维空间上去,但并非随意投影,而是需要遵循一个规则:希望降维后的数据不能失真,也就是说被PCA降掉的那些维度只能是噪声或是冗余的数据。

噪声可以理解为样本数据各维度之间的相关性干扰,冗余可以理解为没有的维度(何为没用?我们PCA处理的基础是保持数据的可区分性,如果该维度上样本数据变异度很小,那么留它何用~~)。

以上是PCA的本质和基本思想。下面我们来具体分析。假设现在有很多个样本,每个样本都是多维的,他们自然都可以在多维坐标系上表示出来。现在我们第一步是要进行维度的变换,实际上就是通过旋转形成新的坐标系直线(此时还没有降维)。将各样本数据投影在这些直线上,其投影的长度是在新坐标系下的样本各维度值。通过计算各直线上投影的方差值,我们可以进行排序。方差值大说明这个新维度区分能力强,我们应该留下;反之则该去掉(降维去冗余)。

现在通过以上思想你应该可以推到出PCA的具体公式了。至于具体的公式,本讲决定直接跳过(留给下一讲),现在我可以直接告诉你大概运用什么样的方法怎样来进行PCA。完成PCA的关键是——协方差矩阵!!协方差矩阵度量的是维度与维度之间的关系,而非样本与样本之间,所以我们直接对协方差矩阵进行某种变化,是不是就可以到达降噪和去冗余的目的呢?

Absolutely!!这种变化就是矩阵的对角化(对角化实际上还没有降维,只是同维度的变换)。对角化之后非对角上的元素都是0,这就到达了去噪声的目的。而对角线上的元素是新维度的方差(你应该明白对角化的矩阵依然是协方差矩阵吧),所以我们只需要在这些方差中挑选较大的一些,舍去较小的,这样就去冗余了。通过这两步工作PCA最主要的工作就完成了。

统计知识选讲(一)——主成分分析(PCA)的思想的更多相关文章

  1. 统计知识选讲(二)——主成分分析(PCA)的推导和应用

    1.数学推导 根据上讲的思想,我们可以用下图来进行数学上的推导. 2.PCA的步骤 1)对原始数据进行标准化处理:对该指标变量进行标准化, 2)计算相关系数矩阵(协方差矩阵) 3)计算相关系数矩阵的特 ...

  2. 线性判别分析(LDA), 主成分分析(PCA)及其推导【转】

    前言: 如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解LDA就是很有必要的了. 谈到LDA,就不得不谈谈PCA,PCA ...

  3. 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA

    本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...

  4. 主成分分析PCA详解

    转载请声明出处:http://blog.csdn.net/zhongkelee/article/details/44064401 一.PCA简介 1. 相关背景 上完陈恩红老师的<机器学习与知识 ...

  5. 主成分分析(PCA)原理及推导

    原文:http://blog.csdn.net/zhongkejingwang/article/details/42264479 什么是PCA? 在数据挖掘或者图像处理等领域经常会用到主成分分析,这样 ...

  6. 05-03 主成分分析(PCA)

    目录 主成分分析(PCA) 一.维数灾难和降维 二.主成分分析学习目标 三.主成分分析详解 3.1 主成分分析两个条件 3.2 基于最近重构性推导PCA 3.2.1 主成分分析目标函数 3.2.2 主 ...

  7. 机器学习之主成分分析PCA原理笔记

    1.    相关背景 在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律.多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的 ...

  8. 主成分分析(PCA)原理详解_转载

    一.PCA简介 1. 相关背景 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律.多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上 ...

  9. 用scikit-learn学习主成分分析(PCA)

    在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维. 1. scikit-learn PCA类介绍 ...

随机推荐

  1. eclipse中使用git进行版本号控制

    协作开发的时候没有版本号控制是非常痛苦的事情,使用git能够非常好的完毕这项任务,由于非常多的开源码都在github上公布,因此学会使用git是非常重要的一项技能. 这篇写的是在eclipse下使用的 ...

  2. 使用SqlBulkCopy导入数据至MS SQL Server

    原文:使用SqlBulkCopy导入数据至MS SQL Server Insus.NET一直使用表类型来数据入MS SQL Server.参考<存储过程参数为DataTable>http: ...

  3. 开源Dubbox

    当当网开源Dubbox https://github.com/dangdangdotcom/dubbox https://github.com/alibaba/dubbo http://www.inf ...

  4. InstallShield集成安装MSDE2000最小版本(二) fishout特许授权发布

    原文:InstallShield集成安装MSDE2000最小版本(二) fishout特许授权发布 原帖地址:http://blog.csdn.net/fishout/archive/2009/10/ ...

  5. 《STL源代码剖析》---stl_hash_set.h阅读笔记

    STL仅仅规定接口和复杂度,对于详细实现不作要求.set大多以红黑树实现,但STL在标准规格之外提供了一个所谓的hash_set,以hash table实现.hash_set的接口,hash_tabl ...

  6. 几乎没用到过的css 样式

    1. :focus  选择器用于选取获得焦点的元素. 案例:http://www.w3school.com.cn/tiy/t.asp?f=css_sel_focus 2. clearfix清除浮动闭合 ...

  7. 读书笔记—CLR via C#异常和状态管理

    前言 这本书这几年零零散散读过两三遍了,作为经典书籍,应该重复读反复读,既然我现在开始写博了,我也准备把以前觉得经典的好书重读细读一遍,并且将笔记整理到博客中,好记性不如烂笔头,同时也在写的过程中也可 ...

  8. C#/ASP.NET/AJAX

      C#/ASP.NET/AJAX ASP.NET 4.5新特性一:强类型数据绑定(Strongly-Type Data-Bindings) 摘要: 随着ASP.NET 4.5的发布提供了很多的新特性 ...

  9. 笔试总结篇(一) : 广州X公司笔试

    一.单选题: Ps : 当时由于去广州路上颠簸很困,导致刚做几分钟题目就睡了一觉.起来发现20分钟过去了.擦擦! 1. 假设磁盘文件foobar.txt 由 6个ASCII 码字符“foobar” 组 ...

  10. 在Linux使用GCC编译C语言共享库

    在Linux使用GCC编译C语言共享库 对任何程序员来说库都是必不可少的.所谓的库是指已经编译好的供你使用的代码.它们常常提供一些通用功能,例如链表和二叉树可以用来保存任何数据,或者是一个特定的功能例 ...