Manacher模板(O(n)内求最长回文串长度)
转自:https://segmentfault.com/a/1190000008484167
/*
由于回文分为偶回文(比如 bccb)和奇回文(比如 bcacb),而在处理奇偶问题上会比较繁琐,所以这里我们使用一个技巧,在字符间插入一个字符(前提这个字符未出现在串里)。举个例子:s="abbahopxpo"
,转换为s_new="$#a#b#b#a#h#o#p#x#p#o#"
(这里的字符 $ 只是为了防止越界,下面代码会有说明),如此,s 里起初有一个偶回文abba
和一个奇回文opxpo
,被转换为#a#b#b#a#
和#o#p#x#p#o#
,长度都转换成了奇数。
定义一个辅助数组int p[]
,p[i]
表示以s_new[i]
为中心的最长回文的半径,例如:
i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
s_new[i] | $ | # | a | # | b | # | b | # | a | # | h | # | o | # | p | # | x | # | p | # | o | # |
p[i] | 1 | 2 | 1 | 4 | 5 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 6 | 1 | 2 | 1 | 2 | 1 |
可以看出,p[i]-1
正好是原字符串中最长回文串的长度。
Manacher算法之所以快,就快在对 p 数组的求法上有个捷径。在我们解决了奇偶回文的繁琐时,剩下的难点就是求 p 数组,按照普通思维,我们是这样求解的:求解p[i]
,先初始化p[i]=1
,再以s_new[i]
为中心判断两边是否相等,相等就p[i]++
。这就是普通的思维,但是我们想想,能否让p[i]
的初始化不是 1,让它更大点,看下图:
设置两个变量,mx 和 id 。
mx 代表以s_new[id]
为中心的最长回文最右边界,也就是mx=id+p[id]
。
假设我们现在求p[i]
,也就是以s_new[i]
为中心的最长回文半径,如果i<mx
,如上图,那么:
if (i < mx)
p[i] = min(p[2 * id - i], mx - i);
2 * id -i
其实就是等于 j ,p[j]
表示以s_new[j]
为中心的最长回文半径,见上图,因为 i 和 j 关于 id 对称,我们利用p[j]
来加快查找。
*/
时间复杂度:O(n)
应用:
求最长回文串长度
求原串以每个字符为中心的奇数长度回文串的长度
代码如下:
//S用来放原串,CS用来放新串
char S[maxn],CS[maxn<<1];
int P[maxn];
int Init(){
int len=strlen(S);
CS[0]='$';
CS[1]='#';
int cnt=2;
for(int i=0;i<len;i++){
CS[cnt++]=S[i];
CS[cnt++]='#';
}
CS[cnt]='\0';
return cnt;
}
int Manacher(){
int len=Init();
int ans=-1;
int id,mx=0;
for(int i=1;i<len;i++){
if(i<mx) P[i]=min(P[2*id-i],mx-i);
else P[i]=1;
while(CS[i-P[i]]==CS[i+P[i]]) P[i]++;
if(mx<i+P[i]){
id=i;
mx=i+P[i];
}
ans=max(ans,P[i]-1);
}
return ans;
}
Manacher模板(O(n)内求最长回文串长度)的更多相关文章
- UVa 11404 回文子序列(LCS求最长回文串长度)
https://vjudge.net/problem/UVA-11404 题意: 给定一个由小写字母组成的字符串,删除其中的0个或多个字符,使得剩下的字母(顺序不变)组成一个尽量长的回文串.如果有多解 ...
- 字符串的最长回文串:Manacher’s Algorithm
题目链接:Longest Palindromic Substring 1. 问题描述 Given a string S, find the longest palindromic substring ...
- Manacher's Algorithm 马拉车算法(求最长回文串)
作用:求一个字符串中的最长子串,同时还可以求所有子串的长度. 题目链接: https://vjudge.net/contest/254692#problem/B 最长回文串长度的代码: int Man ...
- (最长回文串 模板) 最长回文 -- hdu -- 3068
http://acm.hdu.edu.cn/showproblem.php?pid=3068 最长回文 Time Limit: 4000/2000 MS (Java/Others) Memory ...
- manacher 算法(最长回文串)
manacher算法: 定义数组p[i]表示以i为中心的(包含i这个字符)回文串半径长 将字符串s从前扫到后for(int i=0;i<strlen(s);++i)来计算p[i],则最大的p[i ...
- Manacher(最长回文串)
http://acm.hdu.edu.cn/showproblem.php?pid=3068 最长回文 Problem Description 给出一个只由小写英文字符a,b,c...y,z组成的字符 ...
- ACM题目————最长回文串
Description 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度. 回文就是正反读都是一样的字符串,如aba, abba等 Input 输入有多组cas ...
- Manacher算法 - 求最长回文串的利器
求最长回文串的利器 - Manacher算法 Manacher主要是用来求某个字符串的最长回文子串. 不要被manacher这个名字吓倒了,其实manacher算法很简单,也很容易理解,程序短,时间复 ...
- HDU 3068 最长回文 (Manacher最长回文串)
Problem Description 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度.回文就是正反读都是一样的字符串,如aba, abba等 Input 输 ...
随机推荐
- Rxjava Retrofix2 okhttp3网络框架自解(转)
直接代码 类一 public class Okhttp3Utils { private static OkHttpClient mOkHttpClient; public static OkHttpC ...
- tomcat的server.xml配置
<Host>标签 appBase属性: 1 这个目录下面的子目录将自动被部署为应用. 2 这个目录下面的.war文件将被自动解压缩并部署为应用 一 ...
- 割点的tarjan算法模板
基本思路: 朴素的思想是删除每一个点,然后去dfs,这样无疑会爆炸 换一种思路,怎样判断是割点呢,如果是根节点的话毫无疑问只要看子树的数目,但是如果不是根节点呢,不知大牛是怎样想到的 利用两个数组df ...
- 21.与重入锁相关联的Condition
import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.ReentrantLock; /** * ...
- 【JavaWeb项目】一个众筹网站的开发(三)第一个网页
一.bootstrap 本项目采用bootstrap3 bootstrap中文网 https://www.bootcss.com/ 使用bootstrap三步: 1.导入jQuery 2.导入boot ...
- NVMe SSD是什么?
https://blog.51cto.com/alanwu/1766945 一直对闪存存储关注的朋友对NVMe SSD一定非常熟悉,NVMe SSD是现如今性能最好的存储盘.这种高性能盘在互联网领域已 ...
- 「NOI2017」整数 解题报告
「NOI2017」整数 有一些比较简单的\(\log^2n\)做法 比如暴力在动态开点线段树上维护每个位置为\(0\)还是\(1\),我们发现涉及到某一位加上\(1\)或者减去\(1\)实际上对其他位 ...
- 2017 NOIp 初赛体验
很菜...我还是太蒟蒻了. d 老师太强了... 应该能有七十几分 初赛稳了 Update: 五十几分...
- Another Blog
I also hold a blog with thoughts of English learning. Get there ===>. It's a private blog. Actual ...
- js、jQuery实现文字上下无缝轮播、滚动效果
因项目需要实现消息通知上下无缝轮播的效果,所以写了一下,在这个分享出来,希望再次遇到此需求的道友,可以直接拷贝来用,节约一点不必要的时间. 原生JS版本 <!DOCTYPE html> & ...