GERALD07加强版题解
题目描述:
N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数。
输入格式:
第一行四个整数N、M、K、type,代表点数、边数、询问数以及询问是否加密。 接下来M行,代表图中的每条边。 接下来K行,每行两个整数L、R代表一组询问。对于type=0的测试点,读入的L和R即为询问的L、R;对于type=1的测试点,每组询问的L、R应为L xor lastans和R xor lastans。
输出格式:
K行每行一个整数代表该组询问的联通块个数。
题解:
连通问题首先考虑LCT。
考虑连通块个数的计算方法。
连通块个数=点数-去掉重边后的边数。
逐个枚举边,如果这条边连接的两个点没有连通,连接这条边;反之,把两点间最早的边弹出,连接这条边,并记录弹出边的编号。
每次查询区间时,如果这条边弹出的边在区间内,那么这条边是无效的。
所以问题转化为求区间内小于某个数的数的个数,可以主席树维护。
时间复杂度$O(nlog_n)$
Code:
#include<iostream>
#include<cstdio>
using namespace std;
const int N=;
const int inf=1e9+;
int n,m,k,ty,cnt,top;
int a[N<<],st[N<<],ch[N<<][],f[N<<],rev[N<<],mi[N<<];
int u[N],v[N],rt[N],b[N],an[N];
struct seg{
int lc,rc,w;
}t[N<<];
int read()
{
int s=;char c=getchar();
while(c<''||c>'') c=getchar();
while(c>=''&&c<=''){
s=(s<<)+(s<<)+c-'';
c=getchar();
}
return s;
}
int get(int x)
{
return ch[f[x]][]==x;
}
bool isroot(int x)
{
return ch[f[x]][]!=x&&ch[f[x]][]!=x;
}
void pushup(int x)
{
mi[x]=a[x];
if(ch[x][]) mi[x]=min(mi[x],mi[ch[x][]]);
if(ch[x][]) mi[x]=min(mi[x],mi[ch[x][]]);
}
void pushdown(int x)
{
if(rev[x]){
swap(ch[x][],ch[x][]);
if(ch[x][]) rev[ch[x][]]^=;
if(ch[x][]) rev[ch[x][]]^=;
rev[x]=;
}
}
void rotate(int x)
{
int y=f[x],z=f[y],k=get(x);
if(!isroot(y)){
if(ch[z][]==y) ch[z][]=x;
else ch[z][]=x;
}
f[x]=z;f[y]=x;f[ch[x][k^]]=y;
ch[y][k]=ch[x][k^];ch[x][k^]=y;
pushup(y);pushup(x);
}
void splay(int x)
{
top=;st[++top]=x;
for(int i=x;!isroot(i);i=f[i]) st[++top]=f[i];
for(int i=top;i>=;i--) pushdown(st[i]);
while(!isroot(x)){
int y=f[x];
if(!isroot(y)){
if(get(x)==get(y)) rotate(y);
else rotate(x);
}
rotate(x);
}
}
void access(int x)
{
for(int y=;x;y=x,x=f[x]){
splay(x);ch[x][]=y;pushup(x);
}
}
void makeroot(int x)
{
access(x);splay(x);
rev[x]^=;
}
void split(int x,int y)
{
makeroot(x);
access(y);splay(y);
}
void link(int x,int y)
{
makeroot(x);
f[x]=y;
}
void cut(int x,int y)
{
split(x,y);
f[x]=ch[y][]=;
}
int find(int x)
{
access(x);splay(x);
pushdown(x);
while(ch[x][]){
pushdown(ch[x][]);
x=ch[x][];
}
splay(x);
return x;
}
void insert(int lk,int &rk,int l,int r,int x)
{
if(rk==) rk=++cnt;
t[rk].w=t[lk].w+;
if(l==r) return;
int mid=(l+r)>>;
if(x<=mid){
t[rk].rc=t[lk].rc;
insert(t[lk].lc,t[rk].lc,l,mid,x);
}
else{
t[rk].lc=t[lk].lc;
insert(t[lk].rc,t[rk].rc,mid+,r,x);
}
}
int que(int lk,int rk,int L,int R,int l,int r)
{
if(L>=l&&R<=r) return t[rk].w-t[lk].w;
int mid=(L+R)>>;
if(r<=mid) return que(t[lk].lc,t[rk].lc,L,mid,l,r);
else if(l>mid) return que(t[lk].rc,t[rk].rc,mid+,R,l,r);
else return que(t[lk].lc,t[rk].lc,L,mid,l,r)+que(t[lk].rc,t[rk].rc,mid+,R,l,r);
}
int main()
{
n=read();m=read();k=read();ty=read();
for(int i=;i<=n;i++) a[i]=inf;
for(int i=;i<=m;i++){
u[i]=read();v[i]=read();a[i+n]=i;
if(u[i]!=v[i]){
int x=find(u[i]),y=find(v[i]);
if(x==y){
split(u[i],v[i]);
b[i]=mi[v[i]];
cut(u[b[i]],b[i]+n);
cut(b[i]+n,v[b[i]]);
}
link(u[i],i+n);
link(i+n,v[i]);
insert(rt[i-],rt[i],,m,b[i]);
}
else rt[i]=rt[i-];
}
for(int i=;i<=k;i++){
int l=read(),r=read();
if(ty){
l^=an[i-];r^=an[i-];
}
an[i]=n-que(rt[l-],rt[r],,m,,l-);
}
for(int i=;i<=k;i++) printf("%d\n",an[i]);
return ;
}
GERALD07加强版题解的更多相关文章
- 【LCT+主席树】BZOJ3514 Codechef MARCH14 GERALD07加强版
3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 2023 Solved: 778 ...
- [BZOJ 3514]Codechef MARCH14 GERALD07加强版 (CHEF AND GRAPH QUERIES)
[BZOJ3514] Codechef MARCH14 GERALD07加强版 (CHEF AND GRAPH QUERIES) 题意 \(N\) 个点 \(M\) 条边的无向图,\(K\) 次询问保 ...
- bzoj3514 Codechef MARCH14 GERALD07加强版 lct预处理+主席树
Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 1951 Solved: 746[Submi ...
- 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树
3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 1288 Solved: 490 ...
- BZOJ 3514: Codechef MARCH14 GERALD07加强版( LCT + 主席树 )
从左到右加边, 假如+的边e形成环, 那么记下这个环上最早加入的边_e, 当且仅当询问区间的左端点> _e加入的时间, e对答案有贡献(脑补一下). 然后一开始是N个连通块, 假如有x条边有贡献 ...
- BZOJ 3514: Codechef MARCH14 GERALD07加强版 [LCT 主席树 kruskal]
3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 1312 Solved: 501 ...
- BZOJ_3514_Codechef MARCH14 GERALD07加强版_主席树+LCT
BZOJ_3514_Codechef MARCH14 GERALD07加强版_主席树+LCT Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. I ...
- [BZOJ3514]CodeChef MARCH14 GERALD07加强版(LCT+主席树)
3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 2177 Solved: 834 ...
- BZOJ3514 GERALD07加强版
GERALD07 Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. Input 第一行四个整数N.M.K.type,代表点数.边数.询问数以及询问 ...
随机推荐
- 【dart学习】之运算符重载
一,什么是运算符重载(operator overloading) 在软件开发过程中,运算符重载(英语:operator overloading)是多态的一种.运算符重载通常只是一种语法糖,这种语法对语 ...
- delphi 判断WIN8 , WIN8.1 , WIN10 系统版本
今天测试了WIN8, WIN8.1, WIN10 系统下GetVersionEx 函数,居然取出来的版本都是6.2 . 于是网上查找各种获取内核版本号的方法, 终于找到几种有用的方法, 记录下来以作备 ...
- python数据结构:进制转化探索
*********************************第一部分*************************************************************** ...
- python读取数据库mysql报错
昨天在学习PYTHON读取数据库的知识时,一直在报错,找不到原因. 最后同事说是语法错误. import sysreload(sys)sys.setdefaultencoding('gb18030') ...
- FATFS模块应用笔记
FATFS模块应用笔记 如何港 范围 内存使用 模块尺寸缩小 长文件名 统一的API 重入 复制文件访问 性能有效文件访问 对闪存介质考虑 关键的第 延长使用FATFS API 关于FATFS许可证 ...
- CentOS系统更换软件安装源yum
第一步:备份你的原镜像文件,以免出错后可以恢复. mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.back ...
- Nginx网络架构实战学习笔记(一):Nginx简介、安装、信号控制、nginx虚拟主机配置、日志管理、location 语法、Rewrite语法详解
文章目录 nginx简介 nginx安装 nginx信号控制 nginx虚拟主机配置 日志管理 location 语法 精准匹配的一般匹配 正则匹配 总结 Rewrite语法详解 nginx简介 Ng ...
- cesium左侧列表定位目标
cesium左侧列表定位目标 功能:根据左侧列表经纬度等信息的值,进行搜索定位. 列表: 1 点击清除按钮可以清空所有input的值 2 点击查找可以定位到位置,如果输入的值不在范围内,会有弹出框 ...
- CSRF如何防御
总结网上所说,细细的归纳下 CSRF利用的时网站对用户网页浏览器的信任.在受害人不知情的情况下以 受害人的名义伪造请求发送给攻击者的站点. 1.首先XSS漏洞先防护好(一般是通过过滤器更改特殊字符) ...
- 对 HTTP HTTPS的认识
1.HTTP:超文本传输协议 -以明文的形式传输 -效率更高,但是不安全 2.HTTPS:HTTP+SSL -传输之前数据先加密,之后在揭秘 -效率低,但是安全 3.get请求和post请求的区别 - ...