3、NumPy 数组属性
1、秩、维度
NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推。
在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。
很多时候可以声明 axis。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作
2、Numpy的数组中比较重要的属性
| 属性 | 说明 |
|---|---|
| ndarray.ndim | 秩,即轴的数量或维度的数量 |
| ndarray.shape | 数组的维度,对于矩阵,n 行 m 列 |
| ndarray.size | 数组元素的总个数,相当于 .shape 中 n*m 的值 |
| ndarray.dtype | ndarray 对象的元素类型 |
| ndarray.itemsize | ndarray 对象中每个元素的大小,以字节为单位 |
| ndarray.flags | ndarray 对象的内存信息 |
| ndarray.real | ndarray元素的实部 |
| ndarray.imag | ndarray 元素的虚部 |
| ndarray.data | 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。 |
实例:
import numpy as np
# numpy.arange(start, stop, step, dtype) 返回ndarray的数据类型,如果没有提供,则会使用输入数据的类型
a = np.arange(6, dtype=np.int8)
# ndarray.ndim 用于返回数组的维数,等于秩
print('a的维数:', a.ndim)
# 调整其大小
b = a.reshape(2, 3)
print('b的维数:', b.ndim)
#ndarray.shape 返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。代表每个每个维度的长度
print('b.shape:', b.shape)
# ndarray.size数组元素的总个数
print('数组b元素总数:',b.size)
#ndarray.itemsize 以字节的形式返回数组中每一个元素的大小。
x = np.array([1, 2, 3, 4, 5], dtype=int)
print('a的元素字节大小:{},x的元素的字节大小:{}'.format(a.itemsize, x.itemsize))
输出:
a的维数: 1
b的维数: 2
b.shape: (2, 3)
数组b元素总数: 6
a的元素字节大小:1,x的元素的字节大小:4
ndarray.flags
ndarray.flags 返回 ndarray 对象的内存信息,包含以下属性:
| 属性 | 描述 |
|---|---|
| C_CONTIGUOUS (C) | 数据是在一个单一的C风格的连续段中 |
| F_CONTIGUOUS (F) | 数据是在一个单一的Fortran风格的连续段中 |
| OWNDATA (O) | 数组拥有它所使用的内存或从另一个对象中借用它 |
| WRITEABLE (W) | 数据区域可以被写入,将该值设置为 False,则数据为只读 |
| ALIGNED (A) | 数据和所有元素都适当地对齐到硬件上 |
| UPDATEIFCOPY (U) | 这个数组是其它数组的一个副本,当这个数组被释放时,原数组的内容将被更新 |
1
3、NumPy 数组属性的更多相关文章
- numpy数组属性查看及断言
numpy数组属性查看:类型.尺寸.形状.维度 import numpy as np a1 = np.array([1,2,3,4],dtype=np.complex128) print(a1) ...
- NumPy数组属性
NumPy - 数组属性 这一章中,我们会讨论 NumPy 的多种数组属性. ndarray.shape 这一数组属性返回一个包含数组维度的元组,它也可以用于调整数组大小. 示例 1 import n ...
- Numpy 数组属性
Numpy 数组的维数称为秩(rank),一维数组的秩为 1 , 二维数组的秩为 2 , 以此类推:在Numpy中, 每一个线性的数组称为是一个轴(axis),也就是维度(dimensios).比如说 ...
- 3.NumPy - 数组属性
1.ndarray.shape 这一数组属性返回一个包含数组维度的元组,它也可以用于调整数组大小 # -*- coding: utf-8 -*- import numpy as np a = np.a ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 数组属性
NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(di ...
- Lesson4——NumPy 数组属性
NumPy 教程目录 NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axi ...
- NumPy 超详细教程(1):NumPy 数组
系列文章地址 NumPy 最详细教程(1):NumPy 数组 NumPy 超详细教程(2):数据类型 NumPy 超详细教程(3):ndarray 的内部机理及高级迭代 文章目录 Numpy 数组:n ...
- numpy常见属性、创建数组
1.几种常见numpy的属性 ndim:维度 shape:行数和列数 size:元素个数 >>> import numpy as np #导入numpy模块,np是为了使用方便的 ...
- Numpy | 04 数组属性
NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions).比如说,二 ...
随机推荐
- 用URLGather来管理和保存你的页面
下载链接:http://url-gather.software.informer.com/download/#downloading 安装的过程简单,这里不一一叙述. 安装成功后,找到软件安装的路径, ...
- Linux安装Sqoop及基础使用
下载Sqoop 官网地址 http://sqoop.apache.org/ wget http://mirrors.hust.edu.cn/apache/sqoop/1.4.7/sqoop-1.4.7 ...
- VirtualBox中安装CentOS 7
1.如下所示图,点击“新建”,创建一个新的虚拟机 2.类型选择Linux,版本选择Red Hat,下一步 3.分配内存大小,电脑8G内存,所以分给虚拟机2G,选择下一步 4.选择“现在创建虚拟硬盘” ...
- golang中读取文件
读文件 方式1 #利用ioutil.ReadFile 直接从文件读取到[]byte中# file, err := ioutil.ReadFile("file/test.txt") ...
- 02机器学习实战之K近邻算法
第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...
- ltp-ddt eth_switch_config学习
# @name ALE Table test using SWITCH-CONFIG # @desc Checks default entries in ALE table and verifies ...
- sqlmap 基本使用步骤(二)
post------------------------------------------------------------------1.使用 -rpython sqlmap.py -r pos ...
- 四、MyBatis-映射文件
映射文件指导着MyBatis如何进行数据库增删改查,有着非常重要的意义. <?xml version="1.0" encoding="UTF-8" ?&g ...
- 了解卷积神经网络如何使用TDA学习
在我之前的文章中,我讨论了如何对卷积神经网络(CNN)学习的权重进行拓扑数据分析,以便深入了解正在学习的内容以及如何学习它. 这项工作的重要性可归纳如下: 它使我们能够了解神经网络如何执行分类任务. ...
- python数据分析第二版:数据加载,存储和格式
一:读取数据的函数 1.读取csv文件 import numpy as np import pandas as pd data = pd.read_csv("C:\\Users\\Admin ...