3、NumPy 数组属性
1、秩、维度
NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推。
在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。
很多时候可以声明 axis。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作
2、Numpy的数组中比较重要的属性
属性 | 说明 |
---|---|
ndarray.ndim | 秩,即轴的数量或维度的数量 |
ndarray.shape | 数组的维度,对于矩阵,n 行 m 列 |
ndarray.size | 数组元素的总个数,相当于 .shape 中 n*m 的值 |
ndarray.dtype | ndarray 对象的元素类型 |
ndarray.itemsize | ndarray 对象中每个元素的大小,以字节为单位 |
ndarray.flags | ndarray 对象的内存信息 |
ndarray.real | ndarray元素的实部 |
ndarray.imag | ndarray 元素的虚部 |
ndarray.data | 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。 |
实例:
import numpy as np
# numpy.arange(start, stop, step, dtype) 返回ndarray的数据类型,如果没有提供,则会使用输入数据的类型
a = np.arange(6, dtype=np.int8)
# ndarray.ndim 用于返回数组的维数,等于秩
print('a的维数:', a.ndim)
# 调整其大小
b = a.reshape(2, 3)
print('b的维数:', b.ndim)
#ndarray.shape 返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。代表每个每个维度的长度
print('b.shape:', b.shape)
# ndarray.size数组元素的总个数
print('数组b元素总数:',b.size)
#ndarray.itemsize 以字节的形式返回数组中每一个元素的大小。
x = np.array([1, 2, 3, 4, 5], dtype=int)
print('a的元素字节大小:{},x的元素的字节大小:{}'.format(a.itemsize, x.itemsize))
输出:
a的维数: 1
b的维数: 2
b.shape: (2, 3)
数组b元素总数: 6
a的元素字节大小:1,x的元素的字节大小:4
ndarray.flags
ndarray.flags 返回 ndarray 对象的内存信息,包含以下属性:
属性 | 描述 |
---|---|
C_CONTIGUOUS (C) | 数据是在一个单一的C风格的连续段中 |
F_CONTIGUOUS (F) | 数据是在一个单一的Fortran风格的连续段中 |
OWNDATA (O) | 数组拥有它所使用的内存或从另一个对象中借用它 |
WRITEABLE (W) | 数据区域可以被写入,将该值设置为 False,则数据为只读 |
ALIGNED (A) | 数据和所有元素都适当地对齐到硬件上 |
UPDATEIFCOPY (U) | 这个数组是其它数组的一个副本,当这个数组被释放时,原数组的内容将被更新 |
1
3、NumPy 数组属性的更多相关文章
- numpy数组属性查看及断言
numpy数组属性查看:类型.尺寸.形状.维度 import numpy as np a1 = np.array([1,2,3,4],dtype=np.complex128) print(a1) ...
- NumPy数组属性
NumPy - 数组属性 这一章中,我们会讨论 NumPy 的多种数组属性. ndarray.shape 这一数组属性返回一个包含数组维度的元组,它也可以用于调整数组大小. 示例 1 import n ...
- Numpy 数组属性
Numpy 数组的维数称为秩(rank),一维数组的秩为 1 , 二维数组的秩为 2 , 以此类推:在Numpy中, 每一个线性的数组称为是一个轴(axis),也就是维度(dimensios).比如说 ...
- 3.NumPy - 数组属性
1.ndarray.shape 这一数组属性返回一个包含数组维度的元组,它也可以用于调整数组大小 # -*- coding: utf-8 -*- import numpy as np a = np.a ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 数组属性
NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(di ...
- Lesson4——NumPy 数组属性
NumPy 教程目录 NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axi ...
- NumPy 超详细教程(1):NumPy 数组
系列文章地址 NumPy 最详细教程(1):NumPy 数组 NumPy 超详细教程(2):数据类型 NumPy 超详细教程(3):ndarray 的内部机理及高级迭代 文章目录 Numpy 数组:n ...
- numpy常见属性、创建数组
1.几种常见numpy的属性 ndim:维度 shape:行数和列数 size:元素个数 >>> import numpy as np #导入numpy模块,np是为了使用方便的 ...
- Numpy | 04 数组属性
NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions).比如说,二 ...
随机推荐
- jQuery学习总结02-筛选
一.筛选 1.eq(index|-index) 说明:获取当前链式操作中第N个jQuery对象,返回jQuery对象,类似的有get(index),不过get(index)返回的是DOM对象 示例: ...
- wenzhang
作者:周公子链接:https://zhuanlan.zhihu.com/p/94960418来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 2006年2月9日,首都经济 ...
- break语句、continue语句、goto语句的用法辨析
1.break语句 break语句常使用在switch语句.循环体以及if语句中,它的作用是跳出循环,而且只能跳出一层循环. for (i = 0; i < 10; ++j) { for (j ...
- leetcode x进制数 python3
不少题目都是实现吧10进制数转换成x进制数,实际上都是一个套路,下面是7进制的,想换成什么进制,把7替换成相应数字即可,输出的是字符串 16,32进制这种有特殊要求的转不了,其他的应该通用 class ...
- 切面AOP的切点@Pointcut用法
格式: execution(modifiers-pattern? ret-type-pattern declaring-type-pattern? name-pattern(param-pattern ...
- sqlmap 基本使用步骤(二)
post------------------------------------------------------------------1.使用 -rpython sqlmap.py -r pos ...
- Qt 倒计时验证码按钮效果
本来还想继承QTimer跟QPushButton去实现,后来发现可以使用两个QTimer来实现: 验证码倒计时间:(60s) 封装到widget类里: 需要这几个数据:Button,TimerA,Ti ...
- 5.xml约束技术--------schema
1.schema约束 (1)dtd语法:<!ELEMENT 元素名称 约束> (2)schema符合xml的语法,xml语句 (3)一个xml文件中只能有一个dtd,但是可以有多个sche ...
- ELK Stack
原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/11488404.html ELK workflow log -> filebeat -> l ...
- java源码生成可运行jar
参考资料:https://blog.csdn.net/whatday/article/details/54767187 源码目录层级如下: