题面

传送门

分析

考虑容斥原理,用总的方案数-不含质数的方案数

设\(dp1[i][j]\)表示前i个数,和取模p为j的方案数,

\(dp2[i][j]\)表示前i个数,和取模p为j的方案数,且所有的数均不为质数

[1,m]中的质数可以线性筛出

则\(dp1[i][j]=dp1[i-1][((j-k) \mod p+p)\mod p],j \in [0,p-1],k \in [0,m]\)

\(dp2[i][j]=dp1[i-1][((j-k) \mod p+p)\mod p],j \in [0,p-1],k \in [0,m]且不为质数\)

最终答案为\(dp1[n][0]-dp2[n][0]\)

其中k表示第i位选的数,((j-k)%p+p)%p为前i位的和,这里的减法是带模减法,是为了防止负数取模造成的问题

该算法的时间复杂度为\(O(nmp)\)

#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 105
#define mod 20170408
using namespace std;
int n,m,p; long long dp1[maxn][maxn],dp2[maxn][maxn];
int cnt=0;
int vis[maxn];
int prime[maxn];
void sieve(int n){
vis[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i]){
prime[++cnt]=i;
}
for(int j=1;j<=cnt&&(long long)i*prime[j]<=(long long)n;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0) break;
}
}
} int main(){
scanf("%d %d %d",&n,&m,&p);
sieve(m);
dp1[0][0]=1;
for(int i=1;i<=n;i++){
for(int j=0;j<p;j++){
for(int k=1;k<=m;k++){
dp1[i][j]+=dp1[i-1][((j-k)%p+p)%p];
dp1[i][j]%=mod;
}
}
}
dp2[0][0]=1;
for(int i=1;i<=n;i++){
for(int j=0;j<p;j++){
for(int k=1;k<=m;k++){
if(vis[k]==0) continue;
dp2[i][j]+=dp2[i-1][((j-k)%p+p)%p];
dp2[i][j]%=mod;
}
}
}
printf("%lld\n",dp1[n][0]-dp2[n][0]);
}

有一个小优化,在转移的过程中我们不关心k的值,而是关心k%p的值,所以我们把[1,m]中的数按模p的余数分类

设cntm[i]表示[1,m]中的数%p余i的个数

cnth[i]表示[1,m]中的合数%p余i的个数

则上述状态转移方程可以改写为

\(dp1[i][j]=dp1[i-1][((j-k) \mod p+p)\mod p] \times cntm[k],j \in [0,p-1],k \in [0,p-1]\)

\(dp2[i][j]=dp1[i-1][((j-k) \mod p+p)\mod p] \times cnth[k] ,j \in [0,p-1],k \in [0,p-1]且不为质数\)

我们发现从i-1到i的转移是确定的,可以用矩阵快速幂优化

我们来构造转移矩阵

\(\begin{bmatrix} dp1[i][0] \\ dp1[i][1]\\ \vdots \\dp1[i][p-1]\end{bmatrix} = \begin{bmatrix} cntm[0] \ cntm[p-1] \ cntm[p-2] \ \dots \ cntm[1] \\cntm[1] \ cntm[0] \ cntm[p-1] \ \dots \ cntm[2] \\ \vdots \\ cntm[p-1] \ cntm[p-2] \ cntm[p-3] \ \dots \ cntm[0] \end{bmatrix} \times \begin{bmatrix} dp1[i-1][0] \\ dp1[i-1][1]\\ \vdots \\dp1[i-1][p-1] \end{bmatrix}\)

转移矩阵的第i行第j列为cntm[(i-j+p)%p]

同理有

\(\begin{bmatrix} dp2[i][0] \\ dp2[i][1]\\ \vdots \\dp2[i][p-1]\end{bmatrix} = \begin{bmatrix} cnth[0] \ cnth[p-1] \ cnth[p-2] \ \dots \ cnth[1] \\cnth[1] \ cnth[0] \ cnth[p-1] \ \dots \ cnth[2] \\ \vdots \\ cnth[p-1] \ cnth[p-2] \ cnth[p-3] \ \dots \ cnth[0] \end{bmatrix} \times \begin{bmatrix} dp2[i-1][0] \\ dp2[i-1][1]\\ \vdots \\dp2[i-1][p-1] \end{bmatrix}\)

转移矩阵的第i行第j列为cnth[(i-j+p)%p]

注意\(dp1[0][i]\)的初始值为cntm[i]

所以

\(\begin{bmatrix} dp1[n][0] \\ dp1[n][1]\\ \vdots \\dp1[n][p-1]\end{bmatrix} = \begin{bmatrix} cntm[0] \ cntm[p-1] \ cntm[p-2] \ \dots \ cntm[1] \\cntm[1] \ cntm[0] \ cntm[p-1] \ \dots \ cntm[2] \\ \vdots \\ cntm[p-1] \ cntm[p-2] \ cntm[p-3] \ \dots \ cntm[0] \end{bmatrix}^{n-1} \times \begin{bmatrix} cntm[0] \\ cntm[1]\\ \vdots \\cntm[p-1] \end{bmatrix}\)

\(\begin{bmatrix} dp2[n][0] \\ dp2[n][1]\\ \vdots \\dp2[n][p-1]\end{bmatrix} = \begin{bmatrix} cnth[0] \ cnth[p-1] \ cnth[p-2] \ \dots \ cnth[1] \\cnth[1] \ cnth[0] \ cnth[p-1] \ \dots \ cnth[2] \\ \vdots \\ cnth[p-1] \ cnth[p-2] \ cnth[p-3] \ \dots \ cnth[0] \end{bmatrix}^{n-1} \times \begin{bmatrix} cnth[0] \\ cnth[1]\\ \vdots \\cnth[p-1] \end{bmatrix}\)

时间复杂度为\(O(m+p^3 \log n)\)

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 105
#define maxm 20000005
#define mod 20170408
using namespace std;
int n,m,p; int cnt=0;
int vis[maxm];
int prime[maxm];
void sieve(int n){
vis[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i]){
prime[++cnt]=i;
}
for(int j=1;j<=cnt&&(long long)i*prime[j]<=(long long)n;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0) break;
}
}
} struct matrix{
long long a[maxn][maxn];
matrix(){
memset(a,0,sizeof(a));
}
friend matrix operator * (matrix a,matrix b){
matrix c;
for(int i=0;i<p;i++){
for(int j=0;j<p;j++){
c.a[i][j]=0;
for(int k=0;k<p;k++){
c.a[i][j]+=a.a[i][k]*b.a[k][j]%mod;
c.a[i][j]%=mod;
}
}
}
return c;
}
}; matrix fast_pow(matrix x,int k){
matrix ans;
for(int i=0;i<p;i++){
ans.a[i][i]=1;
}
while(k>0){
if(k&1) ans=ans*x;
x=x*x;
k>>=1;
}
return ans;
} int cntm[maxn],cnth[maxn];
matrix A,B;
int main(){
scanf("%d %d %d",&n,&m,&p);
sieve(m);
for(int i=1;i<=m;i++){
cntm[i%p]++;
}
for(int i=1;i<=m;i++){
if(vis[i]) cnth[i%p]++;
}
for(int i=0;i<p;i++){
for(int j=0;j<p;j++){
A.a[i][j]=cntm[(i-j+p)%p];
B.a[i][j]=cnth[(i-j+p)%p];
}
}
long long ans1=0,ans2=0;
A=fast_pow(A,n-1);
B=fast_pow(B,n-1);
for(int i=0;i<p;i++){
ans1+=cntm[i]*A.a[0][i];
ans1%=mod;
ans2+=cnth[i]*B.a[0][i];
ans2%=mod;
}
printf("%lld\n",(ans1-ans2+mod)%mod);
}

LOJ 2183 / SDOI2015 序列统计 (DP+矩阵快速幂)的更多相关文章

  1. 【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂

    [BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属 ...

  2. bzoj 3992 [SDOI2015] 序列统计 —— NTT (循环卷积+快速幂)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992 (学习NTT:https://riteme.github.io/blog/2016-8 ...

  3. BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*

    BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...

  4. bnuoj 34985 Elegant String DP+矩阵快速幂

    题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...

  5. HDU 5434 Peace small elephant 状压dp+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: ...

  6. 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂

    [题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...

  7. 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂

    [题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...

  8. Codeforces 621E Wet Shark and Block【dp + 矩阵快速幂】

    题意: 有b个blocks,每个blocks都有n个相同的0~9的数字,如果从第一个block选1,从第二个block选2,那么就构成12,问对于给定的n,b有多少种构成方案使最后模x的余数为k. 分 ...

  9. codeforces E. Okabe and El Psy Kongroo(dp+矩阵快速幂)

    题目链接:http://codeforces.com/contest/821/problem/E 题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y- ...

随机推荐

  1. ajax图片上传(asp.net +jquery+ashx)

    一.建立Default.aspx页面 <%@ Page Language="C#" AutoEventWireup="true"  CodeFile=&q ...

  2. weakHashMap 用法

    WeakHashMap,此种Map的特点是: 当除了自身有对key的引用外,此key没有其他引用,那么GC之后此map会自动丢弃此值 当使用 WeakHashMap 时,即使没有显示的添加或删除任何元 ...

  3. netcore中使用session

  4. c# 匿名委托

    using System; namespace AnonymousMethod { delegate void ArithmeticOperation(double operand1, double ...

  5. 伊朗Cisco路由器遭黑客攻击 全国互联网几乎瘫痪

    2018年4月9日,黑客攻击了伊朗的国家信息数据中心.伊朗internet信息安全部称,此次大规模袭击影响了全球约二十万个思科Cisco路由交换器,也包括伊朗的几千个路由器.攻击也影响了互联网服务供应 ...

  6. 美国知名Cloudflare网络公司遭中国顶尖黑客攻击

    最近中美贸易战愈演愈烈,美国知名Cloudflare网络公司的客户的分布式拒绝服务攻击今天在恶意流量方面达到了新的高度,黑客并袭击了该公司在欧洲和美国的数据中心.根据Cloudflare首席执行官马修 ...

  7. CBV和FBV

    CBV和FBV 刚开始写的视图都是基于函数版本的,称为FBV,后来写了一个NB的叫CBV,就是基于类的 FBV就是在URL中的一个路径对应一个函数 urlpatterns = [ url(r'^adm ...

  8. 【leetcode】403. Frog Jump

    题目如下: 解题思路:我的做法是建立一个字典dic,key为stone,value是一个set,里面存的是从前面的所有stone跳跃到当前stone的unit集合.例如stones=[0,1,2,3] ...

  9. 【HDOJ6681】Rikka with Cake(扫描线,线段树)

    题意:给定一个n*m的平面,有k条垂直或平行的直线,问将平面分成了几个互不联通的部分 n,m<=1e9,k<=1e5 思路: 刻在DNA里的二维数点 #include<bits/st ...

  10. Favorite Donut

    Favorite Donut Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...