下面这张图位于第一、二象限内。我们关注红色的门,以及“北京四合院”这几个字下面的紫色的字母。我们把红色的门上的点看成是“+”数据,紫色字母上的点看成是“-”数据,它们的横、纵坐标是两个特征。显然,在这个二维空间内,“+”“-”两类数据不是线性可分的。

我们现在考虑核函数,即“内积平方”。
这里面是二维空间中的两个点。

这个核函数对应着一个二维空间到三维空间的映射,它的表达式是:

可以验证,

在P这个映射下,原来二维空间中的图在三维空间中的像是这个样子:
(前后轴为x轴,左右轴为y轴,上下轴为z轴)
注意到绿色的平面可以完美地分割红色和紫色,也就是说,两类数据在三维空间中变成线性可分的了。
而三维中的这个判决边界,再映射回二维空间中是这样的:
这是一条双曲线,它不是线性的。

================================================

如上面的例子所说,核函数的作用就是隐含着一个从低维空间到高维空间的映射,而这个映射可以把低维空间中线性不可分的两类点变成线性可分的。

当然,我举的这个具体例子强烈地依赖于数据在原始空间中的位置。
事实中使用的核函数往往比这个例子复杂得多。它们对应的映射并不一定能够显式地表达出来;它们映射到的高维空间的维数也比我举的例子(三维)高得多,甚至是无穷维的。这样,就可以期待原来并不线性可分的两类点变成线性可分的了。

================================================

在机器学习中常用的核函数,一般有这么几类,也就是LibSVM中自带的这几类:
1) 线性:
2) 多项式:
3) Radial basis function:
4) Sigmoid:

我举的例子是多项式核函数中的情况。

在实用中,很多使用者都是盲目地试验各种核函数,并扫描其中的参数,选择效果最好的。至于什么样的核函数适用于什么样的问题,大多数人都不懂。很不幸,我也属于这大多数人,所以如果有人对这个问题有理论性的理解,还请指教。

================================================

核函数要满足的条件称为Mercer's condition
由于我以应用SVM为主,对它的理论并不很了解,就不阐述什么了。
使用SVM的很多人甚至都不知道这个条件,也不关心它;有些不满足该条件的函数也被拿来当核函数用。

kernel function的更多相关文章

  1. Kernel Methods (2) Kernel function

    几个重要的问题 现在已经知道了kernel function的定义, 以及使用kernel后可以将非线性问题转换成一个线性问题. 在使用kernel 方法时, 如果稍微思考一下的话, 就会遇到以下几个 ...

  2. [转]核函数K(kernel function)

    1 核函数K(kernel function)定义 核函数K(kernel function)就是指K(x, y) = <f(x), f(y)>,其中x和y是n维的输入值,f(·) 是从n ...

  3. 核函数(kernel function)

    百度百科的解释: 常用核函数: 1.线性核(Linear Kernel): 2.多项式核(Polynomial Kernel): 3.径向基核函数(Radial Basis Function),也叫高 ...

  4. 统计学习方法:核函数(Kernel function)

    作者:桂. 时间:2017-04-26  12:17:42 链接:http://www.cnblogs.com/xingshansi/p/6767980.html 前言 之前分析的感知机.主成分分析( ...

  5. Kernel Functions for Machine Learning Applications

    In recent years, Kernel methods have received major attention, particularly due to the increased pop ...

  6. Kernel Methods - An conclusion

    Kernel Methods理论的几个要点: 隐藏的特征映射函数\(\Phi\) 核函数\(\kappa\): 条件: 对称, 正半定; 合法的每个kernel function都能找到对应的\(\P ...

  7. Kernel Methods (6) The Representer Theorem

    The Representer Theorem, 表示定理. 给定: 非空样本空间: \(\chi\) \(m\)个样本:\(\{(x_1, y_1), \dots, (x_m, y_m)\}, x_ ...

  8. Kernel Methods (5) Kernel PCA

    先看一眼PCA与KPCA的可视化区别: 在PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?里已经推导过PCA算法的小半部分原理. 本文假设你已经知道了PCA算法的基本原理和步骤. 从原始输入 ...

  9. Kernel Methods (4) Kernel SVM

    (本文假设你已经知道了hard margin SVM的基本知识.) 如果要为Kernel methods找一个最好搭档, 那肯定是SVM. SVM从90年代开始流行, 直至2012年被deep lea ...

随机推荐

  1. JavaScript 复制变量的三种方法

    参考:Copying Objects in JavaScript - Orinami Olatunji(@orinamio_) October 23, 2017    直接将一个变量赋给另一个变量时, ...

  2. mvn高级构建

    指定pom文件,打包指定的module,并且自动打包这个模块所依赖的其他模块. mvn clean install -f vmc-business-parent/pom.xml -pl vmc-sch ...

  3. 在vscode 中使用Git -- 已有项目添加到git

    本文使用与在已经存在本地项目的情况下将本地项目添加到git中管理,本地不存在项目则可以直接从Git上克隆下来后再创建项目目录更方便. 创建远程Git 仓库 如果Git 仓库已存在,可直接参考下一部,不 ...

  4. fedora29 安装mongodb 4.0,6问题记录

    如果运行mongod命令时提示 无加载共享库libcrypto.so.10,那就到页面下载http://www.rpmfind.net/linux/rpm2html/search.php?query= ...

  5. radio(单选框)/checkbox(复选框) 美化

    由于某种原因,可能需要对单选框(radio)或复选框(checkbox)进行美化,那么直接修改样式是行不通,要实现就需要添加js,以下js依赖于jquery radio.js: function ra ...

  6. 【WinForm-无边框窗体】实现Panel移动窗体,没有边框的窗体

    没有边框的窗体怎么移动?其实方法有很多,下面介绍一种用控件来移动窗体,Panel或PictureBox都可.主要设置控件的MouseDowm和MouseLeave事件. 第一步:窗体设计 窗体最上面是 ...

  7. ES6 Promise使用介绍

    1.什么是Promise Promise 是异步编程的一种解决方案,比传统的解决方案——回调函数和事件——更合理和更强大. 这么说可能不够直观的理解,看下面的两个例子 // callback回调函数 ...

  8. 51 Nod 1073 约瑟夫环

    1073 约瑟夫环  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 N个人坐成一个圆环(编号为1 - N),从第1个人开始报数,数到K的人出列,后面的人 ...

  9. AHOI/HNOI2017 礼物

    题目链接:戳我 对于题目中给的式子:(大家暂且把\(y_i\)当作\(y_{i+k}\)来看啦qwq) \(\sum_{i=1}^{n}(x_i-(y_i+c))^2\) \(=\sum_{i=1}^ ...

  10. ant design 的表格默认选中

    在使用 ant design 的表格时候使用默认选中项, 需要配置的 Table 的 rowSelection const rowSelection = { type: 'checkbox', get ...