[CSP-S模拟测试]:停不下来的团长奥尔加(DP)
题目传送门(内部题125)
输入格式
第一行一个整数$n$,含义同题中所述。
第二行$n$个整数,第$i$个数表示$p_i$,含义同题中所述。
输出格式
一行一个整数,表示答案对$1000000007(10^9+7)$取模后的结果。
样例
样例输入1:
2
1 2
样例输出1:
4
样例输入2:
4
1 1 2 3
样例输出2:
20
样例输入3:
5
1 1 1 1 1
样例输出3:
62
数据范围与提示
样例$1$解释:
初始奥尔加在位置$1$上,因为这是他第$1$次到达位置$1$,所以第一步他会走到$p_i=1$上,此时的位置$1$已经到达了两次,所以第二步奥尔加会走到$1+1=2$位置上。
同样的,奥尔加接下来会走$p_2=2$,$2+1=3$,一共花费$4$步到达$n+1$位置。
样例$3$解释:
你真的忍心让我全部列出来吗,所以说,不要停下来啊(指偷懒)。
数据范围:
对于$10\%$的数据,保证$1\leqslant n\leqslant 20$;
对于另外$10\%$的数据,满足$p_i=i$;
对于另外$20\%$的数据,满足$p_i=1$;
对于另外$20\%$的数据,保证$1\leqslant n\leqslant 1,000$;
对于$100\%$的数据,保证$1\leqslant n\leqslant 1,000,000,1\leqslant p_i\leqslant i$。
题解
考虑$DP$,定义$dp[i]$表示从$1$第一次到$i$的步数。
那么我们可以列出状态转移方程:
$$dp[i+1]=2\times dp[i]-dp[p[i]]+2$$
因为$p[i]\leqslant i$,所以直接递推即可。
时间复杂度:$\Theta(n)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
const int mod=1000000007;
int n;
long long dp[1000002];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{int x;scanf("%d",&x);dp[i+1]=(2*dp[i]-dp[x]+2+mod)%mod;}
printf("%d",dp[n+1]);
return 0;
}
rp++
[CSP-S模拟测试]:停不下来的团长奥尔加(DP)的更多相关文章
- [CSP-S模拟测试]:小L的数(数位DP+模拟)
题目传送门(内部题132) 输入格式 第一行一个整数$t$. 接下来$t$行每行一个整数$n$. 输出格式 $t$行,每行一个整数表示答案. 样例 样例输入: 41818231232691052109 ...
- [CSP-S模拟测试]:Cover(单调栈++单调队列+DP)
题目传送门(内部题126) 输入格式 第一行两个个整数$n,m$表示区间的长度与彩灯的数量. 接下来$m$行,每行三个整数$l_i,r_i,a_i$表示一条彩灯能够覆盖的区间以及它的美观程度. 输出格 ...
- [CSP-S模拟测试]:数对(线段树优化DP)
题目传送门(内部题96) 输入格式 第一行一个整数$n$,接下来$n$行每行三个整数$a_i,b_i,w_i$. 输出格式 一行一个整数表示最大权值和. 样例 样例输入: 54 4 12 3 31 5 ...
- [CSP-S模拟测试]:邻面合并(状压DP)
题目背景 $NEWorld$作为一个$3D$游戏,对渲染(图形绘制)的效率要求极高.当玩家扩大视野范围时,可见的方块面数量将会迅速增多,以至于大量的顶点处理很快就成为了图形管线中的瓶颈.乔猫想了想,决 ...
- [CSP-S模拟测试]:石头剪刀布(rps)(概率DP)
题目传送门(内部题9) 输入格式 第一行一个整数$n$.接下来$n$行每行$3$个非负整数$r_i,p_i,s_i$. 输出格式 一行一个实数表示答案.当你的答案与标准答案的绝对或相对误差不超过${1 ...
- [CSP-S模拟测试]:小奇的矩阵(matrix)(DP+数学)
题目背景 小奇总是在数学课上思考奇怪的问题. 题目描述 给定一个$n\times m$的矩阵,矩阵中的每个元素$a_{i,j}$为正整数.接下来规定: $1.$合法的路径初始从矩阵左上角出发,每 ...
- 联赛模拟测试5 涂色游戏 矩阵优化DP
题目描述 分析 定义出\(dp[i][j]\)为第\(i\)列涂\(j\)种颜色的方案数 然后我们要解决几个问题 首先是求出某一列涂恰好\(i\)种颜色的方案数\(d[i]\) 如果没有限制必须涂\( ...
- D. 停不下来的团长奥尔加 动态规划
题目描述 分析 设\(f[i]\) 为从 \(i\) 走到 \(i+1\) 的步数 初始值 \(f[i]=2\) 则 \(f[i]=\sum_{i=p[i]}^{i}f[i]\) 考试的时候用树状数组 ...
- [考试反思]1105csp-s模拟测试102: 贪婪
还是有点蠢... 多测没清空T3挂40...(只得了人口普查分20) 多测题要把样例复制粘两遍自测一下防止未清空出锅. 然而不算分... 其实到现在了算不算也不重要了吧... 而且其实T3只考虑最长路 ...
随机推荐
- Jconsole与Jmx 分析JVM状况(下) 转
出处: Jconsole与Jmx 分析JVM状况(下) 线程(ThreadMXBean ) 从 Jconsole 画面取得线程画面如下: 左下角列出了所以正在运行的线程.通过点击某个线程,右下脚可以看 ...
- BM求线性递推模板(杜教版)
BM求线性递推模板(杜教版) BM求线性递推是最近了解到的一个黑科技 如果一个数列.其能够通过线性递推而来 例如使用矩阵快速幂优化的 DP 大概都可以丢进去 则使用 BM 即可得到任意 N 项的数列元 ...
- Abp添加新的Api(不扩展底层方法)
定义新的实体类:FileManage;继承 FullAuditedEntity<Guid> 在XX.Application 中定义IXXservice及实现XXservice public ...
- jquery中的obj.attr()和obj.data
实例一 obj.attr('data-max-width','aa'): obj.data('max-width') 问题 data只会获取第一次select赋值的值 区别 .data每次是从jque ...
- 使用QEMU模拟树莓派
QEMU上的树莓派 我们开始设置一个Lab VM.我们将使用Ubuntu并在其中模拟我们所需的ARM版本. 首先,获取最新的Ubuntu版本并在VM中运行它: https://www.ubuntu.c ...
- Apache官方强心剂:开源不受出口管理条例约束!
开源软件到底受不受美国政府管制?这个话题最近已经成了热点,许多业内的专业人士都对此发表了看法. 对实体清单上所列合约方的出口和再出口的限制特别适用于受出口管理条例(EAR)约束的活动和交易. [1]开 ...
- gitlab和jenkins的安装及使用
gitlab 准备: 最少4G内存 先安装docker软件包然后使用docker search gitlab 查找镜像然后使用docker pull 镜像名:标签名 下载镜像启动容器: docker ...
- linux版宝塔安装Redis
1安装服务 2配置设置 3安装PHP扩展 首先,我们来安装服务,进入管理面板--软件管理--运行环境--redis-点击安装,等待完成 完成之后开始第二步,配置设置.这一步根据自己需要进行配置.注意安 ...
- 15 Zabbix4.4.1系统告警“sda: Disk read/write request response are too high”
点击返回:自学Zabbix之路 点击返回:自学Zabbix4.0之路 点击返回:自学zabbix集锦 Zabbix4.4.1系统告警“sda: Disk read/write request resp ...
- html 中 图片和文字一行 垂直居中对齐
效果: 代码:<div><img src='img/point_icon.png' width='35px' height='35px' style='float: lef ...