D2. Equalizing by Division (hard version)

涉及下标运算一定要注意下标是否越界!!!

思路,暴力判断以每个数字为到达态最小花费

#include<bits/stdc++.h>
using namespace std;
#define sc(x) scanf("%I64d",&x);
#define read(A) for(int i=1;i<=n;i++)scanf("%I64d",&A[i]);
#define int long long
#define P pair<int,int>
#define fi first
#define se second
#define endl '\n'
#define ll long long
#define maxn 200000+10
int n,m,T;
int A[maxn];
int B[];
int ch(int x,int y)
{
for(int i=;i<=y;i++){
x/=;
}
return x;
}
int Ans=1e18;
int check(int x,int t)
{
int _x=x;
if(x==)
{
int ans=;
for(int i=B[]; i<n; i++)
{
int c=A[i]; while(c)
{
ans++;
c/=;
if(ans>Ans){
return 1e18;
}
}
t++;
//cout<<t<<m<<endl;
if(t==m)
{
return ans;
}
}
}
int ans=;
int k=;
int y=;
x*=;
while(x<=&&t<m)
{
for(int i=; i<k; i++)
{
if(ch(x+i,y)!=_x)break;
if(x+i>)break;
if(x+i<=&&B[x+i]>=m-t)
{
ans+=(m-t)*y;
if(ans>Ans)return 1e18;
t=m;
return ans;
}
else
{
ans+=(B[x+i])*y;
if(ans>Ans)return 1e18;
t+=B[x+i];
} }
x*=;
y++;
k*=;
}
if(m<=t)return ans;
else
return 1e18;
}
signed main()
{
sc(n);
sc(m);
for(int i=; i<n; i++)
{
sc(A[i]);
//cout<<A[i]<<endl;
B[A[i]]++;
if(B[A[i]]>=m)
{
puts("");
return ;
}
}
sort(A,A+n);
int t=; for(int i=; i<=; i++)
{
t=check(i,B[i]);
// if(t<ans)cout<<i<<endl;
Ans=min(t,Ans);
}
cout<<Ans<<'\n'; }

D2. Equalizing by Division (hard version)的更多相关文章

  1. codeforces Equalizing by Division (easy version)

    output standard output The only difference between easy and hard versions is the number of elements ...

  2. D2. Remove the Substring (hard version)(思维 )

    D2. Remove the Substring (hard version) time limit per test 2 seconds memory limit per test 256 mega ...

  3. D2. Remove the Substring (hard version)

    D2. Remove the Substring (hard version) 给字符串s,t,保证t为s的子序列,求s删掉最长多长的子串,满足t仍为s的子序列 记录t中每个字母在s中出现的最右的位置 ...

  4. CF1213D Equalizing by Division

    easy version hard version 问题分析 直接从hard version入手.不难发现从一个数\(x\)能得到的数个数是\(O(\log x)\)的.这样总共有\(O(n\log ...

  5. Codeforces 1249 D2. Too Many Segments (hard version)

    传送门 贪心 对于第一个不合法的位置,我们显然要通过删除几个覆盖了它的区间来使这个位置合法 显然删右端点更靠右的区间是更优的,所以就考虑优先删右端点靠右的,然后再考虑下一个不合法位置 用一个 $set ...

  6. codeforces 1249 D2 Too Many Segments (hard version) 贪心+树状数组

    题意 给定n个线段,线段可以相交,第\(i\)个线段覆盖的区间为\([l_i,r_i]\),问最少删除多少个线段让覆盖每个点的线段数量小于等于k. 分析 从左往右扫每个点\(x\),若覆盖点\(x\) ...

  7. Codeforces 1213D Equalizing by Division

    cf题面 中文题意 给n个数,每次可以把其中一个数字位运算右移一位(即整除以二),问要至少操作几次才能让这n个数中有至少k个相等. 解题思路 这题还有个数据范围更小的简单版本,n和k是50,\(a_i ...

  8. Equalizing by Division

    The only difference between easy and hard versions is the number of elements in the array. You are g ...

  9. Codeforces Round #579 (Div. 3) D2. Remove the Substring (hard version) (思维,贪心)

    题意:给你一个模式串\(t\),现在要在主串\(s\)中删除多个子串,使得得到的\(s\)的子序列依然包含\(t\),问能删除的最长子串长度. 题解:首先,我们不难想到,我们可以选择\(s\)头部到最 ...

随机推荐

  1. 洛谷 P1073 最优贸易 题解

    题面 大家都是两遍SPFA吗?我这里就一遍dp啊: 首先判断对于一个点u,是否可以从一号点走到这里,并且可以从u走到n号点: 对于这样的点我们打上标记: 那么抛出水晶球的点一定是从打上标记的点中选出一 ...

  2. 拉勾网python开发要求爬虫

    #今日目标 **拉勾网python开发要求爬虫** 今天要爬取的是北京python开发的薪资水平,招聘要求,福利待遇以及公司的地理位置. 通过实践发现除了必须携带headers之外,拉勾网对ip访问频 ...

  3. django 商城项目之购物车以及python中的一些redis命令

    最近在用django restframe框架做一个商城项目,有一个关于购物车的业务逻辑,是用cookie和redis存储的购物车信息,在这里记录一下. 完成一个商城项目,如果不做一个购物车,就是十分可 ...

  4. json格式和对象类型的转换20170330

    (1)对象的类型转换成字符串类型(或者更确切的说是json类型的) JSONObject jo = JSONObject.fromObject(map);常见的java代码转换成json 比如:后台J ...

  5. POJ 3249 Test for Job (拓扑排序+DP)

    POJ 3249 Test for Job (拓扑排序+DP) <题目链接> 题目大意: 给定一个有向图(图不一定连通),每个点都有点权(可能为负),让你求出从源点走向汇点的路径上的最大点 ...

  6. [.net core]11.异常页

    .net core中的异常页很重要 因为可以查看异常的堆栈信息, 请求的参数(如果有),cookie, http头 帮助我们快速的定位问题 .net core web app  默认开启了异常页,但是 ...

  7. java复习(2)

    1.函数的重载:在同一个类中,允许存在一个以上的同名函数,只要他们的参数个数或者参数类型不相同就可以. 重载与返回值类型无关,只看参数列表.重载方便阅读,优化了程序的设计 eg://返回两个 整数值的 ...

  8. kafka复习(1)

    一:flume复习 0.JMS(java message service )java消息服务 ----------------------------------------------------- ...

  9. 2>&1的含义解释

    某次想将adb的help信息保存起来 F:\android系统\AndroidTool_Release_v2.\bin>adb >help.txt 结果 F:\android系统\Andr ...

  10. Activity安装与使用

    详细安装步骤:http://blog.csdn.net/oyzl68/article/details/16817963