D2. Equalizing by Division (hard version)
D2. Equalizing by Division (hard version)
涉及下标运算一定要注意下标是否越界!!!
思路,暴力判断以每个数字为到达态最小花费
#include<bits/stdc++.h>
using namespace std;
#define sc(x) scanf("%I64d",&x);
#define read(A) for(int i=1;i<=n;i++)scanf("%I64d",&A[i]);
#define int long long
#define P pair<int,int>
#define fi first
#define se second
#define endl '\n'
#define ll long long
#define maxn 200000+10
int n,m,T;
int A[maxn];
int B[];
int ch(int x,int y)
{
for(int i=;i<=y;i++){
x/=;
}
return x;
}
int Ans=1e18;
int check(int x,int t)
{
int _x=x;
if(x==)
{
int ans=;
for(int i=B[]; i<n; i++)
{
int c=A[i]; while(c)
{
ans++;
c/=;
if(ans>Ans){
return 1e18;
}
}
t++;
//cout<<t<<m<<endl;
if(t==m)
{
return ans;
}
}
}
int ans=;
int k=;
int y=;
x*=;
while(x<=&&t<m)
{
for(int i=; i<k; i++)
{
if(ch(x+i,y)!=_x)break;
if(x+i>)break;
if(x+i<=&&B[x+i]>=m-t)
{
ans+=(m-t)*y;
if(ans>Ans)return 1e18;
t=m;
return ans;
}
else
{
ans+=(B[x+i])*y;
if(ans>Ans)return 1e18;
t+=B[x+i];
} }
x*=;
y++;
k*=;
}
if(m<=t)return ans;
else
return 1e18;
}
signed main()
{
sc(n);
sc(m);
for(int i=; i<n; i++)
{
sc(A[i]);
//cout<<A[i]<<endl;
B[A[i]]++;
if(B[A[i]]>=m)
{
puts("");
return ;
}
}
sort(A,A+n);
int t=; for(int i=; i<=; i++)
{
t=check(i,B[i]);
// if(t<ans)cout<<i<<endl;
Ans=min(t,Ans);
}
cout<<Ans<<'\n'; }
D2. Equalizing by Division (hard version)的更多相关文章
- codeforces Equalizing by Division (easy version)
output standard output The only difference between easy and hard versions is the number of elements ...
- D2. Remove the Substring (hard version)(思维 )
D2. Remove the Substring (hard version) time limit per test 2 seconds memory limit per test 256 mega ...
- D2. Remove the Substring (hard version)
D2. Remove the Substring (hard version) 给字符串s,t,保证t为s的子序列,求s删掉最长多长的子串,满足t仍为s的子序列 记录t中每个字母在s中出现的最右的位置 ...
- CF1213D Equalizing by Division
easy version hard version 问题分析 直接从hard version入手.不难发现从一个数\(x\)能得到的数个数是\(O(\log x)\)的.这样总共有\(O(n\log ...
- Codeforces 1249 D2. Too Many Segments (hard version)
传送门 贪心 对于第一个不合法的位置,我们显然要通过删除几个覆盖了它的区间来使这个位置合法 显然删右端点更靠右的区间是更优的,所以就考虑优先删右端点靠右的,然后再考虑下一个不合法位置 用一个 $set ...
- codeforces 1249 D2 Too Many Segments (hard version) 贪心+树状数组
题意 给定n个线段,线段可以相交,第\(i\)个线段覆盖的区间为\([l_i,r_i]\),问最少删除多少个线段让覆盖每个点的线段数量小于等于k. 分析 从左往右扫每个点\(x\),若覆盖点\(x\) ...
- Codeforces 1213D Equalizing by Division
cf题面 中文题意 给n个数,每次可以把其中一个数字位运算右移一位(即整除以二),问要至少操作几次才能让这n个数中有至少k个相等. 解题思路 这题还有个数据范围更小的简单版本,n和k是50,\(a_i ...
- Equalizing by Division
The only difference between easy and hard versions is the number of elements in the array. You are g ...
- Codeforces Round #579 (Div. 3) D2. Remove the Substring (hard version) (思维,贪心)
题意:给你一个模式串\(t\),现在要在主串\(s\)中删除多个子串,使得得到的\(s\)的子序列依然包含\(t\),问能删除的最长子串长度. 题解:首先,我们不难想到,我们可以选择\(s\)头部到最 ...
随机推荐
- [转帖]oracle 00600 4194 4193 问题的处理
oracle断电重启之ORA-00600[4194] https://www.cnblogs.com/xwdreamer/p/3778383.html 部门的机器出现异常 断电导致的 错误 从网上学了 ...
- spring + redis 实例(一)
这一篇主要是redis操作工具类以及基本配置文本储存 首先我们需要定义一个redisUtil去操作底层redis数据库: package com.lcc.cache.redis; import jav ...
- POJ - 2421 Constructing Roads(最小生成树&并查集
There are N villages, which are numbered from 1 to N, and you should build some roads such that ever ...
- 洛谷 P2398 GCD SUM 题解
题面 挺有意思的. 设f[i]表示gcd(i,j)=i的个数,g[i]表示k|gcd(i,j)的个数; g[i]=(n/i)*(n/i); g[i]=f[i]+f[2i]+f[3i]+...; 所以f ...
- dp入门题(数塔)
http://acm.hdu.edu.cn/showproblem.php?pid=2084 题意: 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 在上 ...
- RocketMQ吐血总结
RocketMQ吐血总结 架构 概念模型 最基本的概念模型与扩展后段概念模型 存储模型 RocketMQ吐血总结 User Guide RocketMQ是一款分布式消息中间件,最初是由阿里巴巴消息中间 ...
- Elasticsearch入门教程(二):Elasticsearch核心概念
原文:Elasticsearch入门教程(二):Elasticsearch核心概念 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:ht ...
- 企业面试题|最常问的MySQL面试题集合(二)
MySQL的关联查询语句 六种关联查询 交叉连接(CROSS JOIN) 内连接(INNER JOIN) 外连接(LEFT JOIN/RIGHT JOIN) 联合查询(UNION与UNION ALL) ...
- Android中res下anim和animator文件夹区别与总结
1.anim文件夹 anim文件夹下存放tween animation(补间动画)和frame animation(逐帧动画) 逐帧动画: ①在animation-list中使用item定义动画的全部 ...
- Core Graphics绘图
首先了解一下CGContextRef: An opaque type that represents a Quartz 2D drawing environment. Graphics Context ...