Codeforces 429E(欧拉回路)
题面
传送门
题目大意:
有n条线段,每条线段染红色或蓝色,使得数轴上每个点被红色线段覆盖的次数与被蓝色线段覆盖数差的绝对值小于等于1。输出染色方案。
分析
题意其实可以这样理解:
一段初始全为0 的序列a,给区间[li,ri]" role="presentation">[li,ri][li,ri]+1或-1,使得操作结束后序列中的所有位置绝对值不超过1
可采用差分的思想,给al+1,ar+1−1" role="presentation">al+1,ar+1−1al+1,ar+1−1把区间操作转化成单点操作
因此我们可以建图来模拟这个过程,从l到r+1连一条边,每个点的值就是入度与出度的差
建完图后,会出现多个连通块,若联通块是欧拉回路,则区间值为0
但是,图中会存在许多奇数度的点,必须要连边.
如果从一个奇点到另一个奇点连一条边,如果区间内还有一个奇点,则该点可能会被一种颜色覆盖多次,导致绝对值大于1
所以只能将相邻的奇点连边
总结:
1.线段右端点+1,离散化
2.将相邻奇数点连边,跑欧拉回路
3.输出方案,如果边是从左到右的,输出0,否则输出1
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<stack>
#define maxn 200005
using namespace std;
int n;
struct seg{
int l;
int r;
int dl;
int dr;
}a[maxn];
int m=0;
int tmp[maxn<<2];
int deg[maxn];
struct edge{
int from;
int to;
int next;
}E[maxn<<2];
int size=1;//从1开始存,这样一对反向边会存储在i和i^1的位置
int head[maxn];
int dir[maxn<<2];//记录每条边的方向
int used[maxn];
void add_edge(int u,int v){
size++;
E[size].from=u;
E[size].to=v;
E[size].next=head[u];
head[u]=size;
}
void dfs(int x){
// printf("%d\n",x);
used[x]=1;
for(int i=head[x];i;i=E[i].next){
if(dir[i>>1]==-1){
dir[i>>1]=(i&1)^1;//如果i%2==1,则是从左到右的边,dir=0,否则dir=1
dfs(E[i].to);
}
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d %d",&a[i].l,&a[i].r);//区间很大,必须离散化
a[i].r++;
tmp[++m]=a[i].l;
tmp[++m]=a[i].r;
}
sort(tmp+1,tmp+1+m);
m=unique(tmp+1,tmp+1+m)-tmp-1;
for(int i=1;i<=n;i++){
a[i].dl=lower_bound(tmp+1,tmp+1+m,a[i].l)-tmp;
a[i].dr=lower_bound(tmp+1,tmp+1+m,a[i].r)-tmp;
add_edge(a[i].dl,a[i].dr);//连边
add_edge(a[i].dr,a[i].dl);
deg[a[i].dl]++;
deg[a[i].dr]++;
}
// printf("%d\n",m);
int pre=0;
for(int i=1;i<=m;i++){
if(deg[i]%2&&pre!=0){//相邻的奇数点连边
add_edge(i,pre);
add_edge(pre,i);
pre=0;
}else if(deg[i]%2){
pre=i;
}
}
for(int i=1;i<=size/2;i++){
dir[i]=-1;
}
for(int i=1;i<=m;i++){
if(!used[i]) dfs(i);//欧拉回路
}
for(int i=1;i<=n;i++){
printf("%d ",dir[i]);
}
}
Codeforces 429E(欧拉回路)的更多相关文章
- Codeforces 429E - Points and Segments(欧拉回路)
Codeforces 题面传送门 & 洛谷题面传送门 果然我不具备融会贯通的能力/ll 看到这样的设问我们可以很自然地联想到这道题,具体来说我们可以通过某种方式建出一张图,然后根据" ...
- Codeforces 429E Points and Segments
Description 题面 题目大意:有 \(n\) 个区间 \([L_i,R_i]\) ,你要给每一个区间染红蓝,使得每一个位置被红色染过的次数与被蓝色染过的次数差的绝对值不大于\(1\) Sol ...
- A - Points and Segments CodeForces - 429E
题解: 方法非常巧妙的一道题 首先考虑要求全部为0怎么做 发现是个欧拉回路的问题(很巧妙) 直接dfs一遍就可以了 而这道题 要求是-1,1,0 我们可以先离散化 完了之后判断每个点被奇数还是偶数条边 ...
- Tanya and Password CodeForces - 508D (欧拉回路)
大意:给定n个长为3的子串, 求一个长为n+2的字符串包含所有子串. 相邻两个字符开一个节点, 建图跑欧拉回路, 若存在的话长度一定是$\le n+2$.
- codeforces 429E
题意:给定n<=100000线段[l,r],然后给这些线段染色(red or blue),求最后平面上任意一个点被蓝色及红色覆盖次数只差的绝对值不大于1 思路:把每条线段拆成2个点[l<& ...
- Codeforces Round #296 (Div. 1) C. Data Center Drama 欧拉回路
Codeforces Round #296 (Div. 1)C. Data Center Drama Time Limit: 2 Sec Memory Limit: 256 MBSubmit: xx ...
- Codeforces Gym 100431A Achromatic Number 欧拉回路
原题链接:http://codeforces.com/gym/100431/attachments/download/2421/20092010-winter-petrozavodsk-camp-an ...
- Codeforces 1499G - Graph Coloring(带权并查集+欧拉回路)
Codeforces 题面传送门 & 洛谷题面传送门 一道非常神仙的题 %%%%%%%%%%%% 首先看到这样的设问,做题数量多一点的同学不难想到这个题.事实上对于此题而言,题面中那个&quo ...
- Codeforces 1361C - Johnny and Megan's Necklace(欧拉回路)
Codeforces 题目传送门 & 洛谷题目传送门 u1s1 感觉这个题作为 D1C 还是蛮合适的-- 首先不难发现答案不超过 \(20\),所以可以直接暴力枚举答案并 check 答案是否 ...
随机推荐
- Debian10+OpenMediaVault(OMV)安装
前言:测试打造NAS平台,以下是步骤. 安装Debian10 注:请下载amd64,不要下载i836平台,因为OMV外挂插件不支持I836所以不建议用i836,如只使用官方插件可以无视 安装前-安装, ...
- 【leetcode】1104. Path In Zigzag Labelled Binary Tree
题目如下: In an infinite binary tree where every node has two children, the nodes are labelled in row or ...
- 6409. 【NOIP2019模拟11.06】困难的图论(Tarjan求点双)
题目描述 Description 给定由 n 个点 m 条边组成的无向连通图,保证没有重边和自环. 你需要找出所有边,满足这些边恰好存在于一个简单环中.一个环被称为简单环,当且仅当它包含的所有点都只在 ...
- mysql UNIQUE约束 语法
mysql UNIQUE约束 语法 作用:UNIQUE 约束唯一标识数据库表中的每条记录. 江苏大理石平台 说明:UNIQUE 和 PRIMARY KEY 约束均为列或列集合提供了唯一性的保证.PRI ...
- POJ 2112 Optimal Milking ( 经典最大流 && Floyd && 二分 )
题意 : 有 K 台挤奶机器,每台机器可以接受 M 头牛进行挤奶作业,总共有 C 头奶牛,机器编号为 1~K,奶牛编号为 K+1 ~ K+C ,然后给出奶牛和机器之间的距离矩阵,要求求出使得每头牛都能 ...
- 特征提取算法(4)——Harris角点提取
1.角点 1.1 特征点与角点 特征点是计算机视觉算法的基础,使用特征点来代表图像的内容. 角点是一类重要的点特征,图像分析的角度来定义: 角点可以是两个边缘的角点: 角点是邻域内具有两个主方向的特征 ...
- HTML canvas中translate()与rotate()的理解
首先,当我们在页面上初始化canvas时,相当于在上面放了一块画布,这块画布我们可以理解为上面有一个坐标系(如下图),左上角是原点,往右是X轴的正方向,往下是Y轴的正方向,我们在画布上绘制的内容都是基 ...
- java中 使用输入+输出流对对象序列化
对象: 注意记得实现 Serializable package com.nf147.sim.entity; import java.io.Serializable; public class News ...
- vue中移动端自适应方案
安装 lib-flexible 1.npm i lib-flexible 2.在项目入口文件 main.js 里 引入 lib-flexible import ‘lib-flexible’ 3.添加m ...
- wap开发tips
1.overflow-x 这真的是一个大坑,一旦你在body或者html上用了这个属性,对不起,如果你的页面出现滚动条的话,那就会出现莫名其妙的bug,滑动页面的时候fix在顶部或者底部的会挡住. 解 ...