大概是这样的:一开始图中有\(n\)个连通块,每次操作我们选出各个连通块连出去的最短的边(如果有相同边权的边的话可以把序号作为第二关键字),然后把这些边加入最小生成树。

最坏的情况下每次操作都会让当前的连通块减半,因此Boruvka算法的复杂度为\(O(m\log n)\)。

主要的应用在于边数为\(O(n^2)\)级别但是有特殊性质(如曼哈顿距离、异或等)的情况,选各个连通块连出去的边的时候可以不枚举每条边而是直接找。

#include<bits/stdc++.h>
const int N=5007,M=200007;
struct edge{int u,v,w;}e[M];
int vis[M],a[N],fa[N];
int read(){int x;scanf("%d",&x);return x;}
int cmp(int i,int j){return !j? 1:(e[i].w<e[j].w||(e[i].w==e[j].w&&i<j));}
int Find(int x){return x==fa[x]? x:fa[x]=Find(fa[x]);}
int main()
{
int n=read(),m=read(),i,cnt=1,sum=0,f=1,u,v;
for(i=1;i<=m;++i) e[i]=(edge){read(),read(),read()};
for(i=1;i<=n;++i) fa[i]=i;
while(f)
{
f=0,memset(a,0,sizeof a);
for(i=1;i<=m;++i)
{
if(vis[i]||(u=Find(e[i].u))==(v=Find(e[i].v))) continue;
if(cmp(i,a[u])) a[u]=i;
if(cmp(i,a[v])) a[v]=i;
}
for(i=1;i<=n;++i)
if(a[i]&&!vis[a[i]])
f=1,++cnt,sum+=e[a[i]].w,vis[a[i]]=1,fa[Find(e[a[i]].u)]=Find(e[a[i]].v);
}
cnt==n? printf("%d",sum):puts("orz");
}

Boruvka的更多相关文章

  1. 最小生成树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind

    最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小 ...

  2. 洛谷P3366 【模板】最小生成树(Boruvka算法)

    题意 题目链接 Sol 自己yy着写了一下Boruvka算法. 算法思想很简单,就是每次贪心的用两个联通块之间最小的边去合并. 复杂度\(O(n \log n)\),然鹅没有Kruskal跑的快,但是 ...

  3. Boruvka算法求最小生成树

    学习了一个新的最小生成树的算法,Boruvka(虽然我不知道怎么读).算法思想也是贪心,类似于Kruskal. 大致是这样的,我们维护图中所有连通块,然后遍历所有的点和边,找到每一个连通块和其他连通块 ...

  4. P3366 【模板】最小生成树(boruvka/sollin)

    P3366 [模板]最小生成树 boruvka/sollin 复杂度$O(mlogn)$ 简要说明一下过程 引入一个数组$link[i]$表示连通块$i$下一步可更新的最短的边的编号 1.每次枚举所有 ...

  5. cf888G. Xor-MST(Boruvka最小生成树 Trie树)

    题意 题目链接 给出\(n\)点,每个点有一个点权\(a[i]\),相邻两点之间的边权为\(a[i] \oplus a[j]\),求最小生成树的值 Sol 非常interesting的一道题,我做过两 ...

  6. boruvka算法

    算法正确性证明: 1.最优性:最小边一定包含在生成树中. 2.合法性:一定不会构成环.如果存在环说明一个点的最小连边有两个,显然矛盾. 算法时间复杂度证明: 每执行一次算法,所有联通块的大小都至少为2 ...

  7. 最小生成树---Prim算法和Kruskal算法

    Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...

  8. HDU1102--最小生成树

    Constructing Roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  9. Kruskal vs Borůvka

    做了个对比.Borůvka算法对于稠密图效果特别好.这两个都是求生成森林的算法.Prim+heap+tarjan过于难写不写了. V=200,E=1000 Kruskal method 4875048 ...

随机推荐

  1. 51 Nod 1073 约瑟夫环

    1073 约瑟夫环  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 N个人坐成一个圆环(编号为1 - N),从第1个人开始报数,数到K的人出列,后面的人 ...

  2. JavaWeb_(设计模式)单例模式

    菜鸟教程 传送门 单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一.这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式. 这种模式涉及到一个单一的类,该 ...

  3. [CSP-S模拟测试]:最小值(DP+乱搞)

    题目背景 $Maxtir$更喜欢序列的最小值. 题目传送门(内部题128) 输入格式 第一行输入一个正整数$n$和四个整数$A,B,C,D$. 第二行输入$n$个整数,第$i$个数表示$a_i$. 输 ...

  4. avue你繁琐的表格、表单、树等组件开发的解脱工具,了解一下?

    简介 Avue是基于Vue.js和element的快速开发框架 它的核心是数据驱动UI的思想,让我们从繁琐的crud开发中解脱出来,它的写法类似easyUI,但是写起来比easyui更容易,因为它是基 ...

  5. 四叉树的js实现

    基于 https://gamedevelopment.tutsplus.com/tutorials/quick-tip-use-quadtrees-to-detect-likely-collision ...

  6. 全排列函数next_permutation(a,a+n)

    #include<iostream> #include<algorithm> using namespace std; int main(){ ]; int n; cin> ...

  7. jquery数组的合并 对象的合并

    直接转自:https://www.cnblogs.com/ooo0/p/7737678.html 1.数组的合并 1.1 concat方法 var a=[1,2,3],b=[4,5,6]; var c ...

  8. CocoaPods 安装及使用(亲测有效)

    一.What is CocoaPods? CocoaPods is a dependency manager for Swift and Objective-C Cocoa projects. It ...

  9. 方法三破解:Excel工作表保护密码

    Sub PasswordBreaker()  Dim i As Integer, j As Integer, k As Integer  Dim l As Integer, m As Integer, ...

  10. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

    1. 摘要 作者介绍了一种计算非常高效的 CNN 结构称之为 ShuffleNet,它是专门为计算资源非常有限的移动设备设计的. 这种新的结构主要用到了两种操作:分组点卷积(pointwise gro ...