题目如下:

约翰有n块草场,编号1到n,这些草场由若干条单行道相连。奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草。

贝西总是从1号草场出发,最后回到1号草场。她想经过尽可能多的草场,贝西在通一个草场只吃一次草,所以一个草场可以经过多次。因为草场是单行道连接,这给贝西的品鉴工作带来了很大的不便,贝西想偷偷逆向行走一次,但最多只能有一次逆行。问,贝西最多能吃到多少个草场的牧草。

大意:

求一个有向图在走一次反向边或不走的情况下走的节点数最多的回到起点的路径的节点数

思路:

首先边可以重复走 所以缩点不会影响答案

缩点后得到的是一个DAG 我们有走一次反向边的机会 此时就相当于在DAG上加一条边 由于要从起点回到起点 这加的一条边的两端要满足一端起点能够到达 一端能通往起点

说到这里算法已经显而易见了 故不赘述了

下面是代码:

 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <queue>
#include <memory.h>
#define r(x) x=read()
#define MAXX 100005
#define MIN(a,b) (a<b?a:b)
#define MAX(a,b) (a>b?a:b)
using namespace std;
int h[MAXX],h2[MAXX],cnt,dis[][MAXX],flag[MAXX];
int dfn[MAXX],low[MAXX],id[MAXX],w[MAXX],k,top,sta[MAXX],num;
int n,m,ans,ans2,u,to,st;
struct edge{int to,nex;}e[MAXX],yuan[MAXX];
void add(int u,int to)
{
cnt++;
e[cnt]=(edge){to,h[u]},h[u]=cnt;
}
void tarjan(int now)
{
sta[++top]=now;
dfn[now]=low[now]=++k;
for(int i=h[now];i;i=e[i].nex)
{
if(!dfn[e[i].to])
tarjan(e[i].to),low[now]=MIN(low[now],low[e[i].to]);
else
if(!id[e[i].to])
low[now]=MIN(low[now],dfn[e[i].to]);
}
if(low[now]==dfn[now])
{
id[now]=++num;
while(sta[top]!=now){id[sta[top]]=num;top--;}
top--;
}
}
void spfa(int now,int x)
{
queue<int>que;
dis[x][now]=w[now];
que.push(now);
flag[now]=;
while(!que.empty())
{
int p=que.front();que.pop();
for(int i=h[p];i;i=e[i].nex)
{
if(i%!=x) continue;
if(dis[x][e[i].to]<dis[x][p]+w[e[i].to])
{
dis[x][e[i].to]=dis[x][p]+w[e[i].to];
if(!flag[e[i].to])
flag[e[i].to]=,que.push(e[i].to);
}
}
flag[p]=;
}
}
void dfs(int now)
{
for(int i=h[now];i;i=e[i].nex)
{
int to=e[i].to;
if(i%==)
{
if(dis[][now]&&dis[][to])
ans=MAX(ans,dis[][now]+dis[][to]);
}
else
dfs(to);
}
}
bool cmp(edge a,edge b)
{
return id[a.to]==id[b.to]?id[a.nex]<id[b.nex]:id[a.to]<id[b.to];
}
int read()
{
char ch=;int w=;
while(ch<''||ch>''){ch=getchar();}
while(ch>=''&&ch<=''){w=w*+ch-'';ch=getchar();}
return w;
}
int main()
{
r(n),r(m);
for(int i=;i<=m;++i)
r(u),r(to),add(u,to),yuan[i]=(edge){to,u};
for(int i=;i<=n;++i)
if(!dfn[i])
tarjan(i);
for(int i=;i<=n;++i)
w[id[i]]++;
st=id[];
sort(yuan+,yuan+m+,cmp);
memset(h,,sizeof(h));
cnt=;
for(int i=;i<=m;++i)
{
int x=id[yuan[i].nex],y=id[yuan[i].to];
if((x==id[yuan[i-].nex]&&y==id[yuan[i-].to])||(x==y))
continue;
add(x,y),add(y,x);
}
spfa(st,),spfa(st,);
ans=w[st];
dfs(st);
if(ans>w[st]) printf("%d",ans-w[st]);
else printf("%d",ans);
return ;
}

Tarjan水题系列(1):草鉴定Grass Cownoisseur [USACO15JAN]or[luogu P3119]的更多相关文章

  1. [USACO15JAN]草鉴定Grass Cownoisseur(分层图+tarjan)

    [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of his cows ...

  2. 洛谷——P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  3. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur 解题报告

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 约翰有\(n\)块草场,编号1到\(n\),这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可 ...

  4. 【洛谷P3119】[USACO15JAN]草鉴定Grass Cownoisseur

    草鉴定Grass Cownoisseur 题目链接 约翰有n块草场,编号1到n,这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草. 贝西总是从1号草场出发,最后 ...

  5. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur (SCC缩点,SPFA最长路,枚举反边)

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  6. Tarjan水题系列(5):最大半连通子图 [ZJOI2007 luogu P2272]

    题目 大意: 缩点后转为求最长链的长度和最长链的个数 思路: 看懂题就会做系列 长度和个数都可以拓扑排序后DP求得 毕竟是2007年的题 代码: 如下 #include <cstdio> ...

  7. [USACO15JAN]草鉴定Grass Cownoisseur (分层图,最长路,$Tarjan$)

    题目链接 Solution 水水的套路题. 可以考虑到一个环内的点是可以都到达的,所以 \(tajan\) 求出一个 \(DAG\) . 然后 \(DAG\) 上的点权值就是 \(scc\) 的大小. ...

  8. Tarjan水题系列(4):HAOI2010 软件安装

    题目: 现在我们的手头有N个软件,对于一个软件i,它要占用Wi​的磁盘空间,它的价值为Vi​.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi​的和最大). ...

  9. Tarjan水题系列(3):HNOI2006 潘多拉的魔盒

    题目: 链接 大意: 盒子与盒子之间的关系构成一个有向图 求图上包含节点数最多的路径的节点数 思路: 有向图上求包含节点数最多的路径的节点数 可直接使用tarjan缩点后拓扑dp求得 在此不赘述 此题 ...

随机推荐

  1. 【leetcode】Path Sum IV

    If the depth of a tree is smaller than 5, then this tree can be represented by a list of three-digit ...

  2. 对GraphQL-BFF:微服务背景下的前后端数据交互方案的研究-------引用

    随着多终端.多平台.多业务形态.多技术选型等各方面的发展,前后端的数据交互,日益复杂. 同一份数据,可能以多种不同的形态和结构,在多种场景下被消费. 在理想情况下,这些复杂性可以全部由后端承担.前端只 ...

  3. 计时器 GC垃圾回收 demo

    计时器: public void start() { //定义计时器 Timer timer=new Timer(); //定义运行间隔(数字越小,速度越快) int interval=30; //创 ...

  4. 2019春Python程序设计作业2(0326--0401)

    1-1 已知st="Hello World!",使用print(st[0:-1])语句可以输出字符串变量st中的所有内容. (2分) T         F 1-2 Python程 ...

  5. JSON.parse 测试

    第一种 报错 var t = JSON.parse(""); console.log(t); 第二种 正常 var t = JSON.parse('{"AA": ...

  6. windows10 gcc编译C程序(简单编译)

    参考:http://c.biancheng.net/view/660.html gcc可以一次性完成C语言源程序的编译,也可以分步骤完成:下面先介绍一次性编译过程. 1.生成可执行程序 cd xxx ...

  7. 解决kaggle邮箱验证不能confirm的问题

    感谢这位博主 https://blog.csdn.net/FrankieHello/article/details/78230533

  8. 【python 应用之四】提升 Python 运行性能的 7 个习惯

    大家都知道艺赛旗的 RPA 依赖于 python 语言.因此我们可以掌握一些技巧,可尽量提高 Python 程序性能,也可以避免不必要的资源浪费.1.使用局部变量 尽量使用局部变量代替全局变量:便于维 ...

  9. php 配置优化

    调整php内存限制 vim /usr/local/php/php.ini memory_limit = 1024M 内存优化 /usr/local/php/etc/php-fpm.conf https ...

  10. 双重Iterator 报错!!!!

    List list = new ArrayList(); list.add(new String[]{"0","s1","0038",&qu ...