算法复习-P NP NPC NP-hard概念
from http://blog.csdn.net/huang1024rui/article/details/49154507
P、NP、NPC和NP-Hard相关概念的图形和解释
一、相关概念
P: 能在多项式时间内解决的问题
NP: 不能在多项式时间内解决或不确定能不能在多项式时间内解决,但能在多项式时间验证的问题
NPC: NP完全问题,所有NP问题在多项式时间内都能约化(Reducibility)到它的NP问题,即解决了此NPC问题,所有NP问题也都得到解决。
NP hard:NP难问题,所有NP问题在多项式时间内都能约化(Reducibility)到它的问题(不一定是NP问题)。
二、四者联系的图形表示
说明:
1. P问题属于NP问题,NPC问题属于NP问题。
2. NPC问题同时属于NP hard问题,是NP与NPhard的交集。
三,进一步解释
3.1 时间复杂度
3.2 P类问题的概念
3.3 NP问题的概念
很显然,所有的P类问题都是NP问题。也就是说,能多项式地解决一个问题,必然能多项式地验证一个问题的解——既然正解都出来了,验证任意给定的解也只需要比较一下就可以了。关键是,人们想知道,是否所有的NP问题都是P类问题。我们可以再用集合的观点来说明。如果把所有P类问题归为一个集合P中,把所有 NP问题划进另一个集合NP中,那么,显然有P属于NP。现在,所有对NP问题的研究都集中在一个问题上,即究竟是否有P=NP?通常所谓的“NP问题”,其实就一句话:证明或推翻P=NP。
3.4 NPC问题
1、约化的定义
2.NPC问题
3.5 NP-Hard问题
不要以为NPC问题是一纸空谈。NPC问题是存在的。确实有这么一个非常具体的问题属于NPC问题。下文即将介绍它。
四.举例
下文即将介绍逻辑电路问题。这是第一个NPC问题。其它的NPC问题都是由这个问题约化而来的。因此,逻辑电路问题是NPC类问题的“鼻祖”。
逻辑电路问题是指的这样一个问题:给定一个逻辑电路,问是否存在一种输入使输出为True。
有了第一个NPC问题后,一大堆NPC问题就出现了,因为再证明一个新的NPC问题只需要将一个已知的NPC问题约化到它就行了。后来,Hamilton 回路成了NPC问题,TSP问题也成了NPC问题。现在被证明是NPC问题的有很多,任何一个找到了多项式算法的话所有的NP问题都可以完美解决了。因此说,正是因为NPC问题的存在,P=NP变得难以置信。P=NP问题还有许多有趣的东西,有待大家自己进一步的挖掘。攀登这个信息学的巅峰是我们这一代的终极目标。现在我们需要做的,至少是不要把概念弄混淆了。
更详细的,以下转自:http://blog.csdn.net/crfoxzl/article/details/2192957
NP问题就是指其解的正确性可以在多项式时间内被检查的一类问题。比如说数组求和,得到一个解,这个解对不对呢,显然是可以在多项式时间内验证的。再比如说SAT,如果得到一个解,也是能在多项式时间内验证正确性的。所以SAT和求和等等都是NP问题。然后呢,有一部分NP问题的解已经可以在多项式时间内找到,比如数组求和,这部分问题就是NP中比较简单的一部分,被命名为P类问题。那么P以外的NP问题,就是目前还不能够在多项式时间内求解的问题了。会不会将来某一天,有大牛发明了牛算法,把这些问题都在多项式时间内解决呢?也就是说,会不会所有的NP问题,其实都是P类问题呢,只是人类尚未发现呢?NP=P吗?
可想而知,证明NP=P的路途是艰难的,因为NP问题实在太多了,要一一找到多项式算法。这时Stephen A. Cook这位大牛出现了,写了一篇The Complexity of Theorem Proving Procedures,提出了一个NP-complete的概念。NPC指的是NP问题中最难的一部分问题,所有的NP问题都能在多项式时间内归约到NPC上。所谓归约是指,若A归约到B,B很容易解决,则A很容易解决。显然,如果有任何一道NPC问题在多项式时间内解决了,那么所有的NP问题就都成了P类问题,NP=P就得到证明了,这极大的简化了证明过程。那么怎样证明一个问题C是NP完全问题呢?首先,要证明C是NP问题,也就是C的解的正确性容易验证;然后要证明有一个NP完全问题B,能够在多项式时间内归约到C。这就要求必须先存在至少一个NPC问题。这时Cook大牛就在1971年证明了NP完全问题的祖先就是SAT。SAT问题是指给定一个包含n个布尔变量的逻辑式,问是否存在一个取值组合,使得该式被满足。Cook证明了SAT是一个NPC问题,如果SAT容易解决,那么所有NP都容易解决。Cook是怎样做到的呢?
他通过非确定性图灵机做到的。非确定性图灵机是一类特殊的图灵机,这种机器很会猜,只要问题有一个解,它就能够在多项式时间内猜到。Cook证明了,SAT总结了该机器在计算过程中必须满足的所有约束条件,任何一个NP问题在这种机器上的计算过程,都可以描述成一个SAT问题。所以,如果你能有一个解决SAT的好算法,你就能够解决非确定性图灵机的计算问题,因为NP问题在非图机上都是多项式解决的,所以你解决了SAT,就能解决所有NP,因此——SAT是一个NP完全问题。感谢Cook,我们已经有了一个NPC问题,剩下的就好办了,用归约来证明就可以了。目前人们已经发现了成千上万的NPC问题,解决一个,NP=P就得证,可以得千年大奖(我认为还能立刻获得图灵奖)。
那么肯定有人要问了,那么NP之外,还有一些连验证解都不能多项式解决的问题呢。这部分问题,就算是NP=P,都不一定能多项式解决,被命名为NP-hard问题。NP-hard太难了,怎样找到一个完美的女朋友就是NP-hard问题。一个NP-hard问题,可以被一个NP完全问题归约到,也就是说,如果有一个NP-hard得到解决,那么所有NP也就都得到解决了。
参考文献:
1.什么是P问题、NP问题和NPC问题 :http://www.matrix67.com/blog/archives/105
2.P/NP/NPC/NP-hard概念的图形解释:
http://www.cnblogs.com/jpcflyer/archive/2012/04/15/2450622.html
3.什么是NP问题,什么是NP hard问题,什么是NP完全问题 :
http://blog.csdn.net/com_stu_zhang/article/details/7248277
算法复习-P NP NPC NP-hard概念的更多相关文章
- P问题、NP问题、NPC问题、NP难问题的概念
P问题.NP问题.NPC问题.NP难问题的概念 离入职尚有几天时间,闲来无事,将大家常见却又很容易搞糊涂的几个概念进行整理,希望对大家有所帮助.你会经常看到网上出现“这怎么做,这不是NP问题吗”.“这 ...
- p,np,npc,np难问题,确定图灵机与非确定图灵机
本文转自豆瓣_燃烧的影子 图灵机与可计算性 图灵(1912~1954)出生于英国伦敦,19岁进入剑桥皇家学院研究量子力学和数理逻辑.1935年,图灵写出了"论高斯误差函数"的论文, ...
- P,NP,NPC的通俗解释
这或许是众多OIer最大的误区之一. 你会经常看到网上出现“这怎么做,这不是NP问题吗”.“这个只有搜了,这已经被证明是NP问题 了”之类的话.你要知道,大多数人此时所说的NP问题其实都是指的N ...
- 【计算机算法设计与分析】——NP
时间复杂度 时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当问题规模扩大后,程序需要的时间长度增长得有多快.也就是说,对于高速处理数据的计算机来说,处理某一个特定数据的效率不能衡量一个程序的 ...
- P,NP,NPC,NPC-HARD
P: 能在多项式时间内解决的问题 NP: 不能在多项式时间内解决或不确定能不能在多项式时间内解决,但能在多项式时间验证的问题 NPC: NP完全问题,所有NP问题在多项式时间内都能约化(Reducib ...
- NP问题/NP完全问题(NP-complete problem)如何判断是否是NP完全问题
在算法复杂度分析的过程中,人们常常用特定的函数来描述目标算法,随着变量n的增长,时间或者空间消耗的增长曲线,近而进一步分析算法的可行性(有效性). 引入了Big-O,Big-Ω,来描述目标算法的上限. ...
- 区分range() , np.arange() , np.linspace()
content: range() np.arange() np.linspace() 一.range(start, stop, step) 1.range() 为 python 自带函数 2.生成一个 ...
- scikit-learn工具学习 - random,mgrid,np.r_ ,np.c_, scatter, axis, pcolormesh, contour, decision_function
yuanwen: http://blog.csdn.net/crossky_jing/article/details/49466127 scikit-learn 练习题 题目:Try classify ...
- Python 中的几种矩阵乘法 np.dot, np.multiply, *【转】
本文转载自:https://blog.csdn.net/u012609509/article/details/70230204 Python中的几种矩阵乘法1. 同线性代数中矩阵乘法的定义: np.d ...
随机推荐
- iOS 12.4 越狱已经发布
昨天 unc0ver 3.5.0 发布,支持 iOS 12.4 越狱.12.4 目前为最新版的系统. 下载地址:https://github.com/pwn20wndstuff/Undecimus/r ...
- pandas 分组统计
# coding:utf-8 import pandas as pd import numpy as np # path = r'C:\Users\wuzaipei\Desktop\桂林三金项目签到情 ...
- 小记--------spark内核架构原理分析
首先会将jar包上传到机器(服务器上) 1.在这台机器上会产生一个Application(也就是自己的spark程序) 2.然后通过spark-submit(shell) 提交程序 ...
- SpringBoot 的启动banner生成网址
1.http://patorjk.com/software/taag/#p=display&f=Graffiti&t=Type%20Something%20 2.http://www. ...
- Hadoop组成架构
Hadoop是apache用来“处理海量数据存储和海量数据分析”的分布式系统基础架构,更广义的是指hadoop生态圈.Hadoop的优势 高可靠性:hadoop底层维护多个数据副本,即使某个计算单元故 ...
- easyui在table单元格中添加进度条
function XR_jd(alue, rowData, rowIndex){ var value; ...... var htmlstr = '<div class="easyui ...
- CentOs 7.6 开启防火墙后 无法显示远程文件夹
转:https://blog.csdn.net/ygwlove0110/article/details/88232065 遇到了个坑.服务器开启了防火墙后,ftp客户端连接就无法显示目录.关掉防火墙就 ...
- JS基础_基本语法
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- angular使用@angular/material 出现"export 'ɵɵinject' was not found in '@angular/core'
WARNING in ./node_modules/@angular/cdk/esm5/a11y.es5.js 2324:206-214 "export 'ɵɵinject' was not ...
- 第十五篇 JS 移入移出事件 模拟一个二级菜单
JS 移入移出事件 模拟一个二级菜单 老师演示一个特别简单二级菜单,同学们除了学习JS,还要注意它的元素和CSS样式. 这节课介绍的是JS鼠标移入.移出事件:onmouseover是移入事件,on ...