题意简述

给你一个\(n\)个节点的无向图\(G=\{V,E\}\)的邻接矩阵\(g\)和每个点的点权为\(s_i\),且\(\sum_{i=1}^n s_i = K\),要你求出\(\mathrm{max} \{ \sum_{u,v \in E} s_u \times s_v\}\)

做法

设两个不相邻的点\(u\),\(v\)的点权为\(s_u\)和\(s_v\),令\(a_u = \sum_{g[u][i]=1} s_i, a_v=\sum_{g[v][i]=1} s_i\),此时这对点\((u,v)\)的贡献为\(a_us_u+a_vs_v\)。

  • 不妨设\(a_u\geq a_v\),若\(s_u=s_u+s_v,s_v=0\),\(ans\)并不会变小。

所以最优解一定包含选取一个团(完全图)。对于一个\(n\)个点的完全图,这个完全图的答案为\((\frac {K}{n})^2 \times \frac {n(n-1)}{2}\),所以本题的答案为\((\frac {K}{tot})^2 \times \frac {tot(tot-1)}{2}\),其中\(tot\)为最大团的大小。

我们采用\(Bron-Kerbosch\)算法来求最大团,采用dfs剪枝的方法,时间复杂度\(O\left( {1.14}^n \right)\)。


当然此题模拟退火也可以过,维护一个序列\({c_n}\),\(s_i=\frac {c_i}{\sum_j c_j}\)。对于序列进行随机的$\bmod $固定值(如\(100\))意义下的加减,如果更优则转移。

代码实现

#include<bits/stdc++.h>
using namespace std;
#define re register int
#define ll long long
#define ak *
#define in inline
#define db double
in char getch()
{
static char buf[1<<12],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<12,stdin),p1==p2)?EOF:*p1++;
}
char qwq;
#define gc() getchar()
in int read()
{
re cz=0,ioi=1;qwq=gc();
while(qwq<'0'||qwq>'9') ioi=qwq=='-'?~ioi+1:1,qwq=gc();
while(qwq>='0'&&qwq<='9') cz=(cz<<3)+(cz<<1)+(qwq^48),qwq=gc();
return cz ak ioi;
}
const int N=45;
int n,k,g[N][N],ans,cnt[N],ch[N];
bool dfs(re u,re nw)
{
ch[nw]=u;
if(nw>ans) return ans=nw,true;
for(re i,v=u+1;v<=n;v++)
{
if(!g[u][v]||nw+cnt[v]<=ans) continue;
for(i=1;i<=nw;i++)
if(!g[ch[i]][v]) break;
if(i>nw&&dfs(v,nw+1)) return true;
}
return false;
}
in int bron_kerbosch()
{
for(re i=n;i;i--) dfs(i,1),cnt[i]=ans;
return ans;
}
int main()
{
n=read();k=read();
for(re i=1;i<=n;i++)
for(re j=1;j<=n;j++)
g[i][j]=read();
re cnt=bron_kerbosch();
if(!cnt) return puts("0"),0;
db per=1.0*k/cnt,tot=cnt*(cnt-1)/2.0;
printf("%.8lf",tot*pow(per,2));
return 0;
}

CF839E Mother of Dragons 最大团 Bron-Kerbosch算法的更多相关文章

  1. Codeforces Round #428 (Div. 2)E. Mother of Dragons

    http://codeforces.com/contest/839/problem/E 最大团裸题= =,用Bron–Kerbosch算法,复杂度大多博客上没有,维基上查了查大约是O(3n/3) 最大 ...

  2. 【CF839E】Mother of Dragons 折半状压

    [CF839E]Mother of Dragons 题意:给你一张n个点,m条边的无向图.你有k点能量,你可以把能量分配到任意一些点上,每个点分到的能量可以是一个非负实数.定义总能量为:对于所有边&l ...

  3. Codeforces 839E Mother of Dragons【__builtin_popcount()的使用】

    E. Mother of Dragons time limit per test:2 seconds memory limit per test:256 megabytes input:standar ...

  4. Codeforces 839E Mother of Dragons(极大团)

    [题目链接] http://codeforces.com/contest/839/problem/E [题目大意] 现在有一些点,现在你有k的液体,随意分配给这些点, 当两个点有边相连的时候,他们能产 ...

  5. Codeforces 839E Mother of Dragons

    题 OvO http://codeforces.com/contest/839/problem/E (Codeforces Round #428 (Div. 2) - E) 解 首先,k肯定是要平均分 ...

  6. Project Euler 60: Prime pair sets

    素数3, 7, 109, 673很有意思,从中任取两个素数以任意顺序拼接起来形成的仍然是素数.例如,取出7和109,7109和1097都是素数.这四个素数的和是792,是具有这样性质的四个素数的最小的 ...

  7. POJ1419 Graph Coloring(最大独立集)(最大团)

                                                               Graph Coloring Time Limit: 1000MS   Memor ...

  8. Codeforces Round #428 (Div. 2) 题解

    题目链接:http://codeforces.com/contest/839 A. Arya and Bran 题意:每天给你一点糖果,如果大于8个,就只能给8个,剩下的可以存起来,小于8个就可以全部 ...

  9. 22. CTF综合靶机渗透(十五)

    靶机说明: Game of Thrones Hacking CTF This is a challenge-game to measure your hacking skills. Set in Ga ...

随机推荐

  1. 方法一破解:Excel工作表保护密码

    在excel2016中实测验证过有效 在Excel中,为了保护自已的工作表不被修改,我们可以添加保护密码. 操作步骤: 1.把Excel文件的扩展名xlsx修改为Rar.瞬间Excel文件变成了压缩包 ...

  2. Django学习之缓存

    1.配置 2.应用 由于Django是动态网站,所有每次请求均会去数据进行相应的操作,当程序访问量大时,耗时必然会更加明显,最简单解决方式是使用:缓存.缓存将一个某个views的返回值保存至内存或者m ...

  3. C# WinForm开发系列学习 地址 很详细

    http://www.cnblogs.com/peterzb/archive/2009/07/27/1531910.html

  4. oracle rman catalog--ORA-01580: error creating control backup file

    在测试rman catalog时,错误的设置了snapshot路径,报错 RMAN> show snapshot controlfile name; RMAN configuration par ...

  5. Hibernate一级缓冲

    Hibernate的一级缓冲 什么是缓冲 缓冲概念: 数据存在数据库中,数据库本身就是一个文件系统,使用流的方式操作文件,但是文件中有很多的内容,用流的操作得效率就低. 解决办法: 把数据存在内存中, ...

  6. ELK是什么

    为什么做日志系统 通常当系统发生故障时,工程师需要登录到各个服务器上,使用 grep / sed / awk 等 Linux 脚本工具去日志里查找故障原因.在没有日志系统的情况下,首先需要定位处理请求 ...

  7. pkg-config too old的解决方法

    linux下安装一些库时,会提示pkg-config too old,可以尝试下面的命令 apt-get install pkg-config

  8. python+selenium下载文件——firefox

    修改Firefox的相关配置. 1.profile.set_preference('browser.download.folderList',2) 设置成0代表桌面,1代表下载到浏览器默认下载路径:2 ...

  9. CentOS 7 下安装.NET Core SDK 2.1

    一.RPM包安装 1.导入rpm源 sudo rpm -Uvh https://packages.microsoft.com/config/rhel/7/packages-microsoft-prod ...

  10. java基础笔记)(5)

    xml文件:树形存储格式:通过相同的xml文件实现不同的软件.不同的操作系统.不同的平台之间的信息通讯: 声明xml文件: <?xml version="1.0" encod ...