对redis高并发测试的研究
以下引用大神的:
测试项目: https://github.com/14251104246/redis-demo.git
准备
- 使用
docker-compose命令启动redis服务器(可以用其他方式启动) - idea启动测试项目
- jmeter测试脚本
重现秒杀时出现的超卖问题
- 核心测试代码如下:
/**
* 用于测试redis秒杀
*/
@RestController
@RequestMapping("/api/spike")
@Slf4j
public class SpikeController { @Resource(name = "stringRedisTemplate")
private StringRedisTemplate stringRedisTemplate; @Autowired
private RedissonClient redissonClient;
//记录实际卖出的商品数量
private AtomicInteger successNum = new AtomicInteger(0);
@RequestMapping(value = "/initSku", method = RequestMethod.GET)
public String initSku() {
//初始化库存数量
stringRedisTemplate.opsForValue().set("product_sku", "5");
//初始化实际卖出的商品数量0
successNum.set(0);
return "初始化库存成功";
}
/**
* 会出现超卖情况的减少库存方式
* @return
*/
@RequestMapping(value = "/reduceSku", method = RequestMethod.GET)
public String reduceSku() {
Integer sku = Integer.parseInt(stringRedisTemplate.opsForValue().get("product_sku"));
sku = sku - 1;
if (sku < 0) {
return "库存不足";
} stringRedisTemplate.opsForValue().set("product_sku", sku.toString());
//记录实际卖出的商品数量
return "减少库存成功,共减少" + successNum.incrementAndGet();
} @RequestMapping(value = "/successNum", method = RequestMethod.GET)
public String successNum() {
return "顾客成功抢到的商品数量:" + successNum.get();
}
}
- 测试api:
API{初始化库存数量} >> http://127.0.0.1:8090/api/spike/initSku
API{减少库存数量} >> http://127.0.0.1:8090/api/spike/reduceSku
API{查看共减少库存数量} >> http://127.0.0.1:8090/api/spike/successNum
第一个api用于:初始化库存中的商品数量为5
第二个api用于:减少库存1个商品(即客户购买一个商品)
第三个api用于:查看用户实际购买的商品
少量用户请求的情况展示:
超卖问题原因分析
- 从上面测试结果,我们知道,高并发请求
http://127.0.0.1:8090/api/spike/reduceSku,会出现超卖的情况 - 下面我们看下超卖问题的原因
/**
* 会出现超卖情况的减少库存方式
* @return
*/
@RequestMapping(value = "/reduceSku", method = RequestMethod.GET)
public String reduceSku() {
Integer sku = Integer.parseInt(stringRedisTemplate.opsForValue().get("product_sku"));
sku = sku - 1;
if (sku < 0) {
return "库存不足";
}
stringRedisTemplate.opsForValue().set("product_sku", sku.toString());
//记录实际卖出的商品数量
return "减少库存成功,共减少" + successNum.incrementAndGet();
}
- 从代码片可以看出,问题原因是库存数量
sku的读和写操作不在同一个原子操作上,导致类似不可重复读的现象。可以类比多线程的问题。
通过redis事务解决超卖问题
使用redis原生的sdk
- 如下改造
reduceSku()方法,作为一个新接口http://127.0.0.1:8090/api/spike/reduceSku3
/**
* 加入事务的减少库存方式
* @return
*/
@RequestMapping(value = "/reduceSku3", method = RequestMethod.GET)
public String reduceSku3() {
Jedis jedis = new Jedis("127.0.0.1", 6379);
List<Object> result ;
Transaction transaction = null;
try {
jedis.watch("product_sku");
int sku = Integer.parseInt(jedis.get("product_sku"));
if (sku > 0) {
transaction = jedis.multi();
transaction.set("product_sku", String.valueOf(sku - 1));
// int exp = 1/0;
result = transaction.exec();
if (result == null || result.isEmpty()) {
System.out.println("Transaction error...");// 可能是watch-key被外部修改,或者是数据操作被驳回
// transaction.discard(); //watch-key被外部修改时,discard操作会被自动触发
return "Transaction error...";
}
} else {
return "库存不足";
}
return "减少库存成功,共减少" + successNum.incrementAndGet();
} catch (Exception e) {
log.error(e.getMessage());
transaction.discard();
return "fail";
}
}
spring的redisTemplate执行事务
- 注意: 若要使用spring的
redisTemplate执行事务,需要在开启事务后执行一个redis的查询操作(但不能使用查询到的值)。原因有两点:- spring对redis事务的
exec()方法返回结果做了处理(把返回值的OK结果删掉)。- 导致在事务中只有
set等更新操作时,事务执行失败与成功返回的结果一样
- 导致在事务中只有
- 事务过程中查询redis的值只会在事务执行成功后才放回。而在事务执行过程中只会返回
null
- spring对redis事务的
- 接口
http://127.0.0.1:8090/api/spike/reduceSku3是使用spring的redisTemplate执行事务的例子。代码如下
@RequestMapping(value = "/reduceSku2", method = RequestMethod.GET)
public String reduceSku2() {
stringRedisTemplate.setEnableTransactionSupport(true);
List<Object> results = stringRedisTemplate.execute(new SessionCallback<List<Object>>() {
@Override
public List<Object> execute(RedisOperations operations) throws DataAccessException {
operations.watch("product_sku");
String product_sku = (String) operations.opsForValue().get("product_sku");
operations.multi();
operations.opsForValue().get("product_sku");//必要的空查询
Integer sku = Integer.parseInt(product_sku);
sku = sku - 1;
if (sku < 0) {
return null;
}
operations.opsForValue().set("product_sku", sku.toString());
return operations.exec();
// operations.unwatch(); //执行exec()后自动unwatch()
}
});
if (results != null && results.size() > 0) {
return "减少库存成功,共减少" + successNum.incrementAndGet();
}
return "库存不足";
// return result.toString();
}
spring的redisTemplate执行事务(使用zset)
- 接口
http://127.0.0.1:8090/api/set/reduceSku是使用zset的方式
@RequestMapping(value = "/reduceSku", method = RequestMethod.GET)
public String reduceSku5(String pid) {
pid = pid==null? String.valueOf(1) :pid;
String finalPid = pid;
List<Object> results = redisTemplate.execute(new SessionCallback<List<Object>>() {
@Override
public List<Object> execute(RedisOperations redisOperations) throws DataAccessException {
String key = "product";
redisOperations.watch(key);
ZSetOperations<String, String> kvzSetOperations = redisOperations.opsForZSet();
Object score = kvzSetOperations.score(key, finalPid);
redisOperations.multi();
if (score != null && Double.valueOf(score.toString()) > 0) {
kvzSetOperations.incrementScore("product", finalPid, -1);
}
return redisOperations.exec();
}
});
if (results != null && results.size() > 0) {
return "减少库存成功,共减少" + successNum.incrementAndGet();
}
return "库存不足";
}
@RequestMapping(value = "/reduceSku4", method = RequestMethod.GET)
public String reduceSku4() {
RLock rLock = redissonClient.getLock("product_sku");
try {
rLock.lock();
Integer sku = Integer.parseInt(stringRedisTemplate.opsForValue().get("product_sku"));
sku = sku - 1;
if (sku < 0) {
return "库存不足";
}
stringRedisTemplate.opsForValue().set("product_sku", sku.toString());
return "减少库存成功,共减少" + successNum.incrementAndGet();
} finally {
rLock.unlock();
}
}
对redis高并发测试的研究的更多相关文章
- Java高并发测试框架JCStress
前言 如果要研究高并发,一般会借助高并发工具来进行测试.JCStress(Java Concurrency Stress)它是OpenJDK中的一个高并发测试工具,它可以帮助我们研究在高并发场景下JV ...
- Redis高并发和快速的原因
一.Redis的高并发和快速原因 1.redis是基于内存的,内存的读写速度非常快: 2.redis是单线程的,省去了很多上下文切换线程的时间: 3.redis使用多路复用技术,可以处理并发的连接 ...
- 《Netty Zookeeper Redis 高并发实战》 图书简介
<Netty Zookeeper Redis 高并发实战> 图书简介 本书为 高并发社群 -- 疯狂创客圈 倾力编著, 高度剖析底层原理,深度解读面试难题 疯狂创客圈 Java 高并发[ ...
- Jmeter之仿真高并发测试-集合点
场景: 大家在使用Jmeter测试的时候应该发现了, (1)线程启动了就会直接发送测试请求:--如果要模拟在一瞬间高并发量测试的时候,需要调高线程数量,这很耗测试机器的性能,往往无法支持较大的并发数, ...
- Redis高并发快的3大原因详解
1. Redis的高并发和快速的原因 1.redis是基于内存的,内存的读写速度非常快: 2.redis是单线程的,省去了很多上下文切换线程的时间: 3.redis使用多路复用技术,可以处理并发的连接 ...
- Redis 高并发解决方案
针对大流量瞬间冲击,比如秒杀场景 redis前面可以加一层限流 sentinel / Hystrix redis高并发(读多写少)下缓存数据库双写误差: 1. 修改操作使用分布式锁(就是修改的时候加锁 ...
- Redis高并发分布式锁详解
为什么需要分布式锁 1.为了解决Java共享内存模型带来的线程安全问题,我们可以通过加锁来保证资源访问的单一,如JVM内置锁synchronized,类级别的锁ReentrantLock. 2.但是随 ...
- nginx+lua+redis高并发应用建设
ngx_lua将lua嵌nginx,让nginx运行lua脚本.高并发,非堵塞过程中的各种请求. url要求nginxserver,然后lua查询redis,返回json数据. 一.安装lua-ngi ...
- 2020重新出发,NOSQL,redis高并发系统的分析和设计
高并发系统的分析和设计 任何系统都不是独立于业务进行开发的,真正的系统是为了实现业务而开发的,所以开发高并发网站抢购时,都应该先分析业务需求和实际的场景,在完善这些需求之后才能进入系统开发阶段. 没有 ...
随机推荐
- Delphi XE2 之 FireMonkey 入门(45Finally) - 结题与问题
Delphi XE2 之 FireMonkey 入门(45Finally) - 结题与问题 很喜欢 FMX 的一些新控件, 如: TExpander.TArcDial.TComboTrackBar.T ...
- python学习笔记:(一)基础语法
一.编码 默认情况下,python3采用的是utf-8,所有字符串都是unicode字符串.如果有其他需要的时候,可以修改为其他的. 如:# _*_ coding:gb2312 _*_ 二.标识符 标 ...
- JVM监控工具之JProfiler
一.简介 JProfiler是一款Java的性能监控工具.可以查看当前应用的对象.对象引用.内存.CPU使用情况,线程运行情况(阻塞.等待等),同时可以查找哪个对象占用的内存比较多.哪个对象占用CPU ...
- python+ selenium&APPium自动化 page Object 设计模式
题记: 之前公司项目比较稳定, 在进行了系统测试,想用自动化测试进行冒烟测试,或者对主要功能进行测试, 因此用到了PO模式 因此做个记录: Page Object Page Object模式是使用Se ...
- P1969积木大赛
这是2018与2013提高组的真题,可怕,,原题出了两年,是个纯模拟. 读完题后就想写一个朴素的模拟,先遍历层数,再把达到层数的宽度#存起来,再判断是否连续,如果不连续ans++,然后每一次循环都要初 ...
- [Luogu 5465] [LOJ 6435] [PKUSC2018]星际穿越(倍增)
[Luogu 5465] [LOJ 6435] [PKUSC2018]星际穿越(倍增) 题面 n个点的图,点i和[l[i],i)的所有点连双向边.每次询问(l,r,x)表示x到[l,r]的所有点的最短 ...
- PCIe事务层の详解(一)
PCIe总线的通信机制:当一个设备要想另一个设备进行读取通信时,请求方requester需要向另一个设备发送请求request,靶向方作为事件完成方completer,以complete Packet ...
- Xdex(百度版)脱壳工具基本原理
[原创]Xdex(百度版)脱壳工具基本原理作 者: sherrydl时 间: 2015-12-13,10:52:45链 接: http://bbs.pediy.com/showthread.php?t ...
- vue 源码分析
初始化 Data,props,event监听 beforCreated,Created 挂载 执行编译,首次渲染.创建和追加过程 编译 编译模块分为三个阶段:parse.optimize.gener ...
- 您的浏览器没有获得Java Virtual Machine(JVM)支持。可能由于没有安装JVM或者已安装但是没有启用。请安装JVM1.5或者以上版本,如果已安装则启用它。
您的浏览器没有获得Java Virtual Machine(JVM)支持.可能由于没有安装JVM或者已安装但是没有启用.请安装JVM1.5或者以上版本,如果已安装则启用它. https://www.j ...