程序员面试题精选100题(16)-O(logn)求Fibonacci数列[算法]
作者:何海涛
出处:http://zhedahht.blog.163.com/
题目:定义Fibonacci数列如下:
/ 0 n=0
f(n)= 1 n=1
\ f(n-1)+f(n-2) n=2
输入n,用最快的方法求该数列的第n项。
分析:在很多C语言教科书中讲到递归函数的时候,都会用Fibonacci作为例子。因此很多程序员对这道题的递归解法非常熟悉,看到题目就能写出如下的递归求解的代码。
///////////////////////////////////////////////////////////////////////
// Calculate the nth item of Fibonacci Series recursively
///////////////////////////////////////////////////////////////////////
long long Fibonacci_Solution1(unsigned int n)
{
int result[2] = {0, 1};
if(n < 2)
return result[n]; return Fibonacci_Solution1(n - 1) + Fibonacci_Solution1(n - 2);
}
但是,教科书上反复用这个题目来讲解递归函数,并不能说明递归解法最适合这道题目。我们以求解f(10)作为例子来分析递归求解的过程。要求得f(10),需要求得f(9)和f(8)。同样,要求得f(9),要先求得f(8)和f(7)……我们用树形结构来表示这种依赖关系
f(10)
/ \
f(9) f(8)
/ \ / \
f(8) f(7) f(7) f(6)
/ \ / \
f(7) f(6) f(6) f(5)
我们不难发现在这棵树中有很多结点会重复的,而且重复的结点数会随着n的增大而急剧增加。这意味这计算量会随着n的增大而急剧增大。事实上,用递归方法计算的时间复杂度是以n的指数的方式递增的。大家可以求Fibonacci的第100项试试,感受一下这样递归会慢到什么程度。在我的机器上,连续运行了一个多小时也没有出来结果。
其实改进的方法并不复杂。上述方法之所以慢是因为重复的计算太多,只要避免重复计算就行了。比如我们可以把已经得到的数列中间项保存起来,如果下次需要计算的时候我们先查找一下,如果前面已经计算过了就不用再次计算了。
更简单的办法是从下往上计算,首先根据f(0)和f(1)算出f(2),在根据f(1)和f(2)算出f(3)……依此类推就可以算出第n项了。很容易理解,这种思路的时间复杂度是O(n)。
///////////////////////////////////////////////////////////////////////
// Calculate the nth item of Fibonacci Series iteratively
///////////////////////////////////////////////////////////////////////
long long Fibonacci_Solution2(unsigned n)
{
int result[2] = {0, 1};
if(n < 2)
return result[n]; long long fibNMinusOne = 1;
long long fibNMinusTwo = 0;
long long fibN = 0;
for(unsigned int i = 2; i <= n; ++ i)
{
fibN = fibNMinusOne + fibNMinusTwo; fibNMinusTwo = fibNMinusOne;
fibNMinusOne = fibN;
} return fibN;
}
这还不是最快的方法。下面介绍一种时间复杂度是O(logn)的方法。在介绍这种方法之前,先介绍一个数学公式:
{f(n), f(n-1), f(n-1), f(n-2)} ={1, 1, 1,0}n-1
(注:{f(n+1), f(n), f(n), f(n-1)}表示一个矩阵。在矩阵中第一行第一列是f(n+1),第一行第二列是f(n),第二行第一列是f(n),第二行第二列是f(n-1)。)
有了这个公式,要求得f(n),我们只需要求得矩阵{1, 1, 1,0}的n-1次方,因为矩阵{1, 1, 1,0}的n-1次方的结果的第一行第一列就是f(n)。这个数学公式用数学归纳法不难证明。感兴趣的朋友不妨自己证明一下。
现在的问题转换为求矩阵{1, 1, 1, 0}的乘方。如果简单第从0开始循环,n次方将需要n次运算,并不比前面的方法要快。但我们可以考虑乘方的如下性质:
/ an/2*an/2 n为偶数时
an=
\ a(n-1)/2*a(n-1)/2 n为奇数时
要求得n次方,我们先求得n/2次方,再把n/2的结果平方一下。如果把求n次方的问题看成一个大问题,把求n/2看成一个较小的问题。这种把大问题分解成一个或多个小问题的思路我们称之为分治法。这样求n次方就只需要logn次运算了。
实现这种方式时,首先需要定义一个2×2的矩阵,并且定义好矩阵的乘法以及乘方运算。当这些运算定义好了之后,剩下的事情就变得非常简单。完整的实现代码如下所示。
#include <cassert> ///////////////////////////////////////////////////////////////////////
// A 2 by 2 matrix
///////////////////////////////////////////////////////////////////////
struct Matrix2By2
{
Matrix2By2
(
long long m00 = 0,
long long m01 = 0,
long long m10 = 0,
long long m11 = 0
)
:m_00(m00), m_01(m01), m_10(m10), m_11(m11)
{
} long long m_00;
long long m_01;
long long m_10;
long long m_11;
}; ///////////////////////////////////////////////////////////////////////
// Multiply two matrices
// Input: matrix1 - the first matrix
// matrix2 - the second matrix
//Output: the production of two matrices
///////////////////////////////////////////////////////////////////////
Matrix2By2 MatrixMultiply
(
const Matrix2By2& matrix1,
const Matrix2By2& matrix2
)
{
return Matrix2By2(
matrix1.m_00 * matrix2.m_00 + matrix1.m_01 * matrix2.m_10,
matrix1.m_00 * matrix2.m_01 + matrix1.m_01 * matrix2.m_11,
matrix1.m_10 * matrix2.m_00 + matrix1.m_11 * matrix2.m_10,
matrix1.m_10 * matrix2.m_01 + matrix1.m_11 * matrix2.m_11);
} ///////////////////////////////////////////////////////////////////////
// The nth power of matrix
// 1 1
// 1 0
///////////////////////////////////////////////////////////////////////
Matrix2By2 MatrixPower(unsigned int n)
{
assert(n > 0); Matrix2By2 matrix;
if(n == 1)
{
matrix = Matrix2By2(1, 1, 1, 0);
}
else if(n % 2 == 0)
{
matrix = MatrixPower(n / 2);
matrix = MatrixMultiply(matrix, matrix);
}
else if(n % 2 == 1)
{
matrix = MatrixPower((n - 1) / 2);
matrix = MatrixMultiply(matrix, matrix);
matrix = MatrixMultiply(matrix, Matrix2By2(1, 1, 1, 0));
} return matrix;
} ///////////////////////////////////////////////////////////////////////
// Calculate the nth item of Fibonacci Series using devide and conquer
///////////////////////////////////////////////////////////////////////
long long Fibonacci_Solution3(unsigned int n)
{
int result[2] = {0, 1};
if(n < 2)
return result[n]; Matrix2By2 PowerNMinus2 = MatrixPower(n - 1);
return PowerNMinus2.m_00;
}
作者:何海涛
出处:http://zhedahht.blog.163.com/
程序员面试题精选100题(16)-O(logn)求Fibonacci数列[算法]的更多相关文章
- 程序员面试题精选100题(33)-在O(1)时间删除链表结点[数据结构]
作者:何海涛 出处:http://zhedahht.blog.163.com/ 题目:给定链表的头指针和一个结点指针,在O(1)时间删除该结点.链表结点的定义如下: struct ListNode { ...
- 程序员面试题精选100题(38)-输出1到最大的N位数[算法]
作者:何海涛 出处:http://zhedahht.blog.163.com/ 题目:输入数字n,按顺序输出从1最大的n位10进制数.比如输入3,则输出1.2.3一直到最大的3位数即999. 分析:这 ...
- 16.O(logn)求Fibonacci数列[Fibonacci]
[题目] log(n)时间Fib(n),本质log(n)求a^n. [代码] C++ Code 12345678910111213141516171819202122232425262728293 ...
- 《面试题精选》15.O(logn)求Fibonacci数列
题目:定义Fibonacci数列例如以下: / 0 n=0 f(n)= 1 n=1 ...
- Java程序员面试题集(1-50)(转)
转:http://blog.csdn.net/jackfrued/article/details/17339393 下面的内容是对网上原有的Java面试题集及答案进行了全面修订之后给出的负责任的题目和 ...
- Java程序员面试题集(1-50
下面的内容是对网上原有的Java面试题集及答案进行了全面修订之后给出的负责任的题目和答案,原来的题目中有很多重复题目和无价值的题目,还有不少的参考答案也是错误的,修改后的Java面试题集参照了JDK最 ...
- Java程序员面试题集(51-70)(转)
转:http://blog.csdn.net/jackfrued/article/details/17403101 Java程序员面试题集(51-70) 摘要:这一部分主要讲解了异常.多线程.容器和I ...
- Java程序员面试题集(136-150)(转)
转:http://blog.csdn.net/jackfrued/article/details/17740651 Java程序员面试题集(136-150) 摘要:这一部分主要是数据结构和算法相关的面 ...
- Java程序员面试题集(71-85)(转)
转:http://blog.csdn.net/jackfrued/article/details/17566627 Java程序员面试题集(71-85) 摘要:这一部分主要包括了UML(统一建模语言) ...
随机推荐
- Applied Functional Analysis(Applications to Mathematical Physics ) E.Zeidler
Applied Functional Analysis(Applications to Mathematical Physics ) E.Zeidler More: QQ565055403
- java 实现视频转换通用工具类:视频截图-Ffmpeg(四)
java 实现视频转换通用工具类:获取视频元数据信息(一) java 实现视频转换通用工具类:视频相互转换-总方法及Mencoder(二) java 实现视频转换通用工具类:视频相互转换-Ffmpeg ...
- 判断一个Bitmap图像是否是.9图
见BitmapFactory的源码中 byte[] np = bm.getNinePatchChunk(); final boolean isNinePatch = np != null & ...
- iOS相机权限、相册权限、定位权限判断
1.判断用户是否有权限访问相册 #import <AssetsLibrary/AssetsLibrary.h> ALAuthorizationStatus author = [ALAsse ...
- PowerShell远程安装应用程序
安装MSI包 使用PowerShell调用WMI对象,你可以执行下面的脚本来安装你的MSI安装包: $box="deviis01" #this is the name of you ...
- Windows下配置PHP支持LDAP扩展方法(wampserver)
在网上搜了好多文章都不行呢,大都是没有开启扩展的问题,可是我的是开启的. 终于看到一篇文章,因为我用的是wampserver.下面是文章原话: 然后你发现上面的提示依旧,因为这是网上大多能查到的资料的 ...
- Funambol Developer's Guide 中 connector development样例的问题
今天学习Funambol的connector开发,官方文档中的样例有问题. 首先,文档中提供的maven命令不可用: mvn archetype:generate -DarchetypeGroupId ...
- android 带表头,左右两个联动的ListView
package com.rytong.mylist; import java.util.ArrayList; import java.util.HashMap; import java.util.Li ...
- UpdatePanel的用法
UpdatePanel控件也是Ajax里用得最多的控件之中的一个,UpdatePanel控件是用来局部更新网页上的内容,网页上要局部更新的内容必须放在UpdatePanel控件里,他必须和上一次说的S ...
- 安装完zend server后,无法访问http://localhost:10081/ZendServer/的解决办法
安装完ZendServer后,默认会设置http://localhost:10081/ZendServer/为ZendServer的后台管理页面, 但对于ZendServer5.0.2(其它版本未知) ...