http://poj.org/problem?id=2060

Taxi Cab Scheme
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 5459   Accepted: 2286

Description

Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coordination of the cabs in order to pick up the customers calling to get a cab as soon as possible,there is also a need to schedule all the taxi rides which have been booked in advance.Given a list of all booked taxi rides for the next day, you want to minimise the number of cabs needed to carry out all of the rides.  For the sake of simplicity, we model a city as a rectangular grid. An address in the city is denoted by two integers: the street and avenue number. The time needed to get from the address a, b to c, d by taxi is |a - c| + |b - d| minutes. A cab may carry out a booked ride if it is its first ride of the day, or if it can get to the source address of the new ride from its latest,at least one minute before the new ride's scheduled departure. Note that some rides may end after midnight.

Input

On the first line of the input is a single positive integer N, telling the number of test scenarios to follow. Each scenario begins with a line containing an integer M, 0 < M < 500, being the number of booked taxi rides. The following M lines contain the rides. Each ride is described by a departure time on the format hh:mm (ranging from 00:00 to 23:59), two integers a b that are the coordinates of the source address and two integers c d that are the coordinates of the destination address. All coordinates are at least 0 and strictly smaller than 200. The booked rides in each scenario are sorted in order of increasing departure time.

Output

For each scenario, output one line containing the minimum number of cabs required to carry out all the booked taxi rides.

Sample Input

2
2
08:00 10 11 9 16
08:07 9 16 10 11
2
08:00 10 11 9 16
08:06 9 16 10 11

Sample Output

1
2

Source

 
【题解】:
题意:有n个任务:开始时间、起始地点、终止地点。每个地点可以派出一辆出租车,如果出租车完成任务i后还可以到达任务j,那么它可以继续执行任务j。现在问最少可以排除多少辆出租车?
算法:1、最小路径覆盖
         2、在无圈有向图中:最小路径覆盖=|P|-最大匹配数。
         3、建图:如果任务i和任务j可以由一辆出租车共同执行,则将i和j连线。满足的条件如下:
    任务i的开始时间+任务i的完成时间+从任务i的目的地到达任务j的起始地点所花费的时间<任务j的开始时间
 
【code】:
 /**
Judge Status:Accepted Memory:1888K
Time:157MS Language:G++
Code Lenght:1687B Author:cj
*/
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm> #define N 550
using namespace std; struct Nod
{
int time,sx,sy,ex,ey; //时间以及始末坐标
}node[N]; int n,m;
int map[N][N];
int cx[N],cy[N],mark[N]; int abs(int x){return x>?x:-x;} int path(int u)
{
int j;
for(j=;j<=n;j++)
{
if(map[u][j]&&!mark[j])
{
mark[j]=;
if(cy[j]==-||path(cy[j]))
{
cx[u] = j;
cy[j] = u;
return ;
}
}
}
return ;
} int maxMatch() //求最大节点覆盖
{
memset(cx,-,sizeof(cx));
memset(cy,-,sizeof(cy));
int i;
int res = ;
for(i=;i<=n;i++)
{
if(cx[i]==-)
{
memset(mark,,sizeof(mark));
res+=path(i);
}
}
return res;
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
int i;
for(i=;i<=n;i++)
{
int h,m;
scanf("%d:%d%d%d%d%d",&h,&m,&node[i].sx,&node[i].sy,&node[i].ex,&node[i].ey);
node[i].time = h*+m; //二维时间化一维
}
memset(map,,sizeof(map));
int j;
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
if(i!=j&&(abs(node[i].sx-node[i].ex)+abs(node[i].sy-node[i].ey)+node[i].time+
abs(node[i].ex-node[j].sx)+abs(node[i].ey-node[j].sy)<node[j].time))
{ //任务i的开始时间+任务i的完成时间+从任务i的目的地到达任务j的起始地点所花费的时间<任务j的开始时间
map[i][j]=;
}
}
}
printf("%d\n",n-maxMatch()); //节点数 - 最大节点覆盖 = 最小路径覆盖
}
return ;
}

poj 2060 Taxi Cab Scheme (最小路径覆盖)的更多相关文章

  1. UVaLive 3126 Taxi Cab Scheme (最小路径覆盖)

    题意:有 n 个客人,要从 si 到 ti,每个人有一个出发时间,现在让你安排最少和出租车去接,在接客人时至少要提前一分钟到达客人的出发地点. 析:把每个客人看成一个结点,然后如果用同一个出租车接的话 ...

  2. UVALive3126 Taxi Cab Scheme —— 最小路径覆盖

    题目链接:https://vjudge.net/problem/UVALive-3126 题解: 最小路径覆盖:即在图中找出尽量少的路径,使得每个结点恰好只存在于一条路径上.其中单独一个点也可以是一条 ...

  3. poj 2060 Taxi Cab Scheme(DAG图的最小路径覆盖)

    题意: 出租车公司有M个订单. 订单格式:     hh:mm  a  b  c  d 含义:在hh:mm这个时刻客人将从(a,b)这个位置出发,他(她)要去(c,d)这个位置. 规定1:从(a,b) ...

  4. poj 2060 Taxi Cab Scheme (二分匹配)

    Taxi Cab Scheme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5710   Accepted: 2393 D ...

  5. hdu1350Taxi Cab Scheme (最小路径覆盖)

    Taxi Cab Scheme Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...

  6. poj 3020 Antenna Placement(最小路径覆盖 + 构图)

    http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  7. POJ 2594 Treasure Exploration(最小路径覆盖变形)

    POJ 2594 Treasure Exploration 题目链接 题意:有向无环图,求最少多少条路径能够覆盖整个图,点能够反复走 思路:和普通的最小路径覆盖不同的是,点能够反复走,那么事实上仅仅要 ...

  8. POJ 3216 Repairing Company(最小路径覆盖)

    POJ 3216 Repairing Company id=3216">题目链接 题意:有m项任务,每项任务的起始时间,持续时间,和它所在的block已知,且往返每对相邻block之间 ...

  9. poj 2594(可相交的最小路径覆盖)

    题目链接:http://poj.org/problem?id=2594 思路:本来求最小路径覆盖是不能相交的,那么对于那些本来就可达的点怎么处理,我们可以求一次传递闭包,相当于是加边,这样我们就可以来 ...

随机推荐

  1. 定义label标签宽度需要设置display:inline-block;

    label{    display:inline-block;     width:120px;    line-height:22px;    text-align: right;}

  2. linux 第一次获得root权限

    开机进入桌面,ctrl+alt+T打开终端————在此时终端显示的是 用户名@电脑名:-$   表示普通用户   在此处输入:sudo passwd root   此时提示———— [sudo] pa ...

  3. Next Power of 2

    Next Power of 2 Write a function that, for a given no n, finds a number p which is greater than or e ...

  4. Jersey(1.19.1) - Life-cycle of Root Resource Classes

    By default the life-cycle of root resource classes is per-request, namely that a new instance of a r ...

  5. 每天一道LeetCode--342. Power of Four

    Given an integer (signed 32 bits), write a function to check whether it is a power of 4. Example:Giv ...

  6. Android 全屏相关操作

    1.隐藏标题栏(titlebar) (1)在代码中隐藏标题栏 requestWindowFeature(Window.FEATURE_NO_TITLE); (2)在Manifest中Applicati ...

  7. 学习C++ Primer 的个人理解(一)

    <C++ Primer>这本书可以说是公认的学习C++最好的书,但我觉得不是特别适合作为教材,书中内容的顺序让人有些蛋疼.我个人认为初学此书是不能跳着看的.如果急于上手的话,我更推荐< ...

  8. C++链式继承

            继承,对于学习C++的每一个人来说,都不会陌生.在Qt的开发中,如果你需要对一个无边框的界面支持move操作,那么你就得通过继承重写虚函数来实现,这并不难,但如果我还需要对一个按钮支持 ...

  9. solaris bind 符号未定义

    ld: fatal: Symbol referencing errors Recently, I am learning the Unix C and come to know that Socket ...

  10. html 模板 swig 预编译插件 grunt-swig-precompile

    GitHub grunt-swig-precompile NPM grunt-swig-precompile 在书写前端静态页面的时候,每个页面总在书写很多重复的标签. 为了提高效率,结合 swig. ...