3. 最优贸易

(trade.pas/c/cpp)

【问题描述】

C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市。任意两个城市之间 多只有一条道路直接相连。这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 1 条。

C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。

商人阿龙来到 C 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 C 国 n 个城市的标号从 1~ n,阿龙决定从 1 号城市出发,并 终在 n 号城市结束自己的旅行。在旅游的过程中,任何城市可以重复经过多次,但不要求经过所有 n 个城市。阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市买入他 喜欢的商品——水晶球,并在之后经过的另一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 C 国旅游,他决定这个贸易只进行 多一次,当然,在赚不到差价的情况下他就无需进行贸易。

假设 C 国有 5 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路为单向通行,双向箭头表示这条道路为双向通行。

 假设 1~n 号城市的水晶球价格分别为 4,3,5,6,1。

阿龙可以选择如下一条线路:1->2->3->5,并在 2 号城市以 3 的价格买入水晶球,在 3 号城市以 5 的价格卖出水晶球,赚取的旅费数为 2。

阿龙也可以选择如下一条线路 1->4->5->4->5,并在第 1 次到达 5 号城市时以 1 的价格买入水晶球,在第 2 次到达 4 号城市时以 6 的价格卖出水晶球,赚取的旅费数为 5。现在给出 n 个城市的水晶球价格,m 条道路的信息(每条道路所连接的两个城市的编号以及该条道路的通行情况)。请你告诉阿龙,他 多能赚取多少旅费。

【输入】

输入文件名为 trade.in。

第一行包含 2 个正整数 n 和 m,中间用一个空格隔开,分别表示城市的数目和道路的数目。

第二行 n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 n 个城市的商品价格。

接下来 m 行,每行有 3 个正整数,x,y,z,每两个整数之间用一个空格隔开。如果 z=1,表示这条道路是城市 x 到城市 y 之间的单向道路;如果 z=2,表示这条道路为城市 x 和城市 y 之间的双向道路。

【输出】

输出文件 trade.out 共 1 行,包含 1 个整数,表示 多能赚取的旅费。如果没有进行贸易,则输出 0。

【输入输出样例】

trade.in

trade.out

5 5

4 3 5 6 1

1 2 1

1     4 1

2     3 2

3     5 1

4     5 2

5

【数据范围】输入数据保证 1 号城市可以到达 n 号城市。

对于 10%的数据,1≤n≤6。

对于 30%的数据,1≤n≤100。

对于 50%的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。

对于 100%的数据,1≤n≤100000,1≤m≤500000,1≤x,y≤n,1≤z≤2,1≤各城市水晶球价格≤100。

【思路】

本题可以概括为求1-n的一条路,使得路上的max-min最大,但max必须在min之后。

刚开始用dfs解,忽略了max与min的先后关系。而又因为本题可以出现环,所以不能用dfs。

本题可以用两边SPFA完成(较dfs而言SPFA是更新),第一次计算每个节点到1路径上的min,第二次计算每个节点到n路径上的max。ans=max{max[i]-min[i]}

然而还有更优的算法,只进行一次SPFA,维护_min[v]代表到v包含v的路上的最小值,维护f[v]代表到v包含v的路上的p-min所得的最大值。注意更新条件。

【代码1】

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<fstream>
#include<vector>
#include<queue>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; const int maxn = +;
const int INF=<<;
vector<int> Gto[maxn],Gbac[maxn];
int n,m,p[maxn],_min[maxn],_max[maxn]; void SPFA_min(int s,int* d) {
int inq[maxn]; fill(inq,inq+n+,);
queue<int> Q;
fill(d,d+n+,INF);
d[s]=p[s]; inq[s]=;
Q.push(s);
while(!Q.empty()) {
int u=Q.front();Q.pop(); inq[u]=;
for(int i=;i<Gto[u].size();i++) {
int v=Gto[u][i];
if(min(d[u],p[v])<d[v]) {
d[v]=min(d[u],p[v]);
if(!inq[v]) {
inq[v]=; Q.push(v);
}
}
}
}
}
void SPFA_max(int s,int* d){
int inq[maxn]; fill(inq,inq+n+,);
queue<int> Q;
d[s]=p[s]; inq[s]=;
Q.push(s);
while(!Q.empty()) {
int u=Q.front();Q.pop(); inq[u]=;
for(int i=;i<Gbac[u].size();i++) {
int v=Gbac[u][i];
if(max(d[u],p[v])>d[v]) {
d[v]=max(d[u],p[v]);
if(!inq[v]) {
inq[v]=; Q.push(v);
}
}
}
}
}
inline void AddEdge(int u,int v) {
Gto[u].push_back(v);
Gbac[v].push_back(u);
}
int main() {
scanf("%d%d",&n,&m);
FOR(i,,n) scanf("%d",&p[i]);
FOR(i,,m) {
int u,v,z;
scanf("%d%d%d",&u,&v,&z);
AddEdge(u,v);
if(z==) AddEdge(v,u);
}
SPFA_min(,_min);
SPFA_max(n,_max);
int ans=;
FOR(i,,n) if(_max[i]&&_min[i]<INF) ans=max(ans,_max[i]-_min[i]);
cout<<ans;
return ;
}

【代码2】

 #include<cstdio>
#include<vector>
#include<queue>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; const int maxn = +;
const int INF=<<;
vector<int> G[maxn];
int n,m,p[maxn],f[maxn],_min[maxn]; void SPFA(int s) {
int inq[maxn]; fill(inq,inq+n+,);
queue<int> Q;
fill(_min,_min+n+,INF);
_min[s]=p[s]; inq[s]=;
Q.push(s);
while(!Q.empty()) {
int u=Q.front();Q.pop(); inq[u]=;
for(int i=;i<G[u].size();i++) {
int v=G[u][i];
if(min(_min[u],p[v])<_min[v] ||f[v]<p[v]-_min[v]|| f[v]<f[u] ) {
//注意判断条件 只要可以更新v结点
_min[v]=min(_min[v],min(_min[u],p[v]));
f[v]=max(f[v],p[v]-_min[v]);
f[v]=max(f[v],f[u]);
if(!inq[v]) {
inq[v]=; Q.push(v);
}
}
}
}
} int main() {
freopen("trade.in","r",stdin);
freopen("trade.out","w",stdout);
scanf("%d%d",&n,&m);
FOR(i,,n) scanf("%d",&p[i]);
FOR(i,,m) {
int u,v,z;
scanf("%d%d%d",&u,&v,&z);
G[u].push_back(v);
if(z==) G[v].push_back(u);
}
SPFA();
printf("%d",f[n]);
return ;
}

NOIP2009 最优贸易的更多相关文章

  1. [Luogu 1073] NOIP2009 最优贸易

    [Luogu 1073] NOIP2009 最优贸易 分层图,跑最长路. 真不是我恋旧,是我写的 Dijkstra 求不出正确的最长路,我才铤而走险写 SPFA 的- #include <alg ...

  2. [NOIP2009]最优贸易(图论)

    [NOIP2009]最优贸易 题目描述 CC 国有 \(n\) 个大城市和 \(m\) 条道路,每条道路连接这 \(n\) 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 \(m\ ...

  3. 【洛谷P1073】[NOIP2009]最优贸易

    最优贸易 题目链接 看题解后感觉分层图好像非常NB巧妙 建三层n个点的图,每层图对应的边相连,权值为0 即从一个城市到另一个城市,不进行交易的收益为0 第一层的点连向第二层对应的点的边权为-w[i], ...

  4. [luogu1073 Noip2009] 最优贸易 (dp || SPFA+分层图)

    传送门 Description C 国有n 个大城市和m 条道路,每条道路连接这n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这m 条道路中有一部分为单向通行的道路,一部分 为 ...

  5. NOIP2009最优贸易[spfa变形|tarjan 缩点 DP]

    题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...

  6. noip2009最优贸易

    试题描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双 ...

  7. 洛谷1073 NOIP2009 最优贸易

    题目大意 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双 ...

  8. noip2009最优贸易(水晶球)

    题目:http://codevs.cn/problem/1173/ https://www.luogu.org/problemnew/show/P1073 本来考虑缩点什么的,后来发现不用. 只要记录 ...

  9. [NOIP2009] 最优贸易 (最短路,分层图)

    题目链接 Solution 分层图+\(SPFA\). 建立3层图,其中每一层之中的边权赋为0. 对于任意一条边 \(t\) ,其起点 \(x\) 和终点 \(y\). 我们将 \(x\) 在第一层的 ...

随机推荐

  1. spring的配置模式与注解模式基础

    “依赖注入”是spring的核心特征,在Web服务器(如Tomcat)加载时,它会根据Spring的配置文件中配置的bean或者是通过注解模式而扫描并装载的bean实例自动注入到Application ...

  2. 【概率】BZOJ 3450:Tyvj1952 Easy

    Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连 ...

  3. javascript中跨源资源共享

    来自<javascript高级程序设计 第三版:作者Nicholas C. Zakas>的学习笔记(十) 通过XHR实现Ajax通信的一个主要限制,来源于跨域安全策略.默认情况下,XHR对 ...

  4. sort-based shuffle的核心:org.apache.spark.util.collection.ExternalSorter

    依据Spark 1.4版 在哪里会用到它 ExternalSorter是Spark的sort形式的shuffle实现的关键.SortShuffleWriter使用它,把RDD分区中的数据写入文件. o ...

  5. ntpServer搭建用以进行时间同步

    在试各种乱七八糟的集群中,突然发现了一个问题,假如在一个闭网环境下安装某些集群软件的时候服务器之间的时间不同步(如HBase),会导致启动失败.那么就需要进行时间同步.可是往常都是网络校准的,没网的集 ...

  6. 数据聚合 & 分组:新一代系统监控的核心功能

    遥想 2015 年 8 月 17 日,Cloud Insight 还在梳理功能原型,畅想 Cloud Insight 存在的意义:为什么阿里云用户需要使用 Cloud Insight 来加强管理. 而 ...

  7. OSharp框架总体设计

    OSharp框架解说系列(1):总体设计 〇.前言 哈,距离前一个系列<MVC实用构架设计>的烂尾篇(2013年9月1日)已经跨了两个年头了,今天是2015年1月9日,日期已经相映,让我们 ...

  8. Java泛型:类型擦除

    类型擦除 代码片段一 Class c1 = new ArrayList<Integer>().getClass(); Class c2 = new ArrayList<String& ...

  9. Razor视图引擎的基本概念与法语

    Razor 视图引擎的特点: 简洁.富于表现.流畅 尽量减少页面代码的输入,实现快速流畅的编程工作 不必明确为服务器代码标记起始与结束符,Razor 能智能判断,这样让页面看清洁,代码方便阅读 asp ...

  10. RedMine项目管理系统安装问题(Windows版一键安装包)

    安装准备: 操作环境:VMware10 下安装的windows10 系统 使用软件:<bitnami-redmine---windows-installer.exe> 问题描述: 安装过程 ...