Yesterday we have learn how to find the SVDI Serial Number, today one of customer from UK look our article and ask us, If i have problem of the SN number display , how can I sort it out? Please do not worry,  here we would tell you the detail steps how to solve the SVDI SN Number Display Problem .

Please following us :

After click SVDI Device: 0 Property, if you find the Product Description and Serial Number is not as the same as that pasted on SVDI hardware, then follow the bellow instruction to fix it.
1. Diconnect USB devices
and connect SVDI to PC to launch “FT_PROG.exe” software. Click “Search
Icon (Magnifying style)” to check hard disk information (as shown
picture below).

2. Apply Template
Right click to select “Device0?>>”Apply Template”>>”svdi-temp.xml” file (as shown picture below)

3. Program Template
Click “Program Devices (Lightning style)” to selct”Device0?. Then click
“Programe” button to start programming. Wait patiently until
programming completed. Disconnect USB and reconnect to launch SVDI
software.

SVDI related link: http://www.eobd2.fr/svdi-vw-audi-vehicle-diagnostic-interface.html

That’s
all for the steps help you solve the SVDI SN number display problem ,
do you know it now ? Any questions, please do not hesitation contact us .

How to solve the SVDI SN Number Display Problem的更多相关文章

  1. [E. Ehab's REAL Number Theory Problem](https://codeforces.com/contest/1325/problem/E) 数论+图论 求最小环

    E. Ehab's REAL Number Theory Problem 数论+图论 求最小环 题目大意: 给你一个n大小的数列,数列里的每一个元素满足以下要求: 数据范围是:\(1<=a_i& ...

  2. 题解-Ehab's REAL Number Theory Problem

    Ehab's REAL Number Theory Problem 前置知识 质数 分解质因数 无向无权图最小环<讲> Ehab's REAL Number Theory Problem/ ...

  3. Number Theory Problem(The 2016 ACM-ICPC Asia China-Final Contest 找规律)

    题目: Mr. Panda is one of the top specialists on number theory all over the world. Now Mr. Panda is in ...

  4. A. Number Theory Problem

    题目大意:计算小于2^n,且满足2^k-1并且是7的倍数的个数 思路:优先打表,数据不大,1e5,然后求个前n项和 #include<bits/stdc++.h> using namesp ...

  5. Gym 101194A / UVALive 7897 - Number Theory Problem - [找规律水题][2016 EC-Final Problem A]

    题目链接: http://codeforces.com/gym/101194/attachments https://icpcarchive.ecs.baylor.edu/index.php?opti ...

  6. 数论 - 组合数学 + 素数分解 --- hdu 2284 : Solve the puzzle, Save the world!

    Solve the puzzle, Save the world! Problem Description In the popular TV series Heroes, there is a ta ...

  7. Display LOV (List Of Values) Using Show_Lov In Oracle Forms

    Show_Lov Function is used to display list of values (LOV) in Oracle Forms. It returns TRUE if the us ...

  8. 【LEETCODE OJ】Single Number

    Prolbem link: http://oj.leetcode.com/problems/single-number/ This prolbem can be solved by using XOR ...

  9. Leetcode 之 Valid Triangle Number

    611. Valid Triangle Number 1.Problem Given an array consists of non-negative integers, your task is ...

随机推荐

  1. 关于缺省路由传递问题的探讨(下)[ip default-network、ip default-gateway等]

    之前文章介绍的是没有路由协议的环境下,那么在有路由协议的环境下: ip default-network IGRP/EIGRP: IP Default-Network所指定的网络必须在EIGRP进程中通 ...

  2. LeetCode283:Move Zeros

    Given an array nums, write a function to move all 0's to the end of it while maintaining the relativ ...

  3. 埃氏筛法(快速筛选n以内素数的个数)

    给你一个数n,请问n以内有多少个素数?(n <= 10e7) 一般来说,要是对一个整数进行素数判断,首先想到的是写个函数判断是否为素数,然后调用这个函数,时间复杂度为O(n^(½)),但是要求n ...

  4. HDU2553N皇后问题(状态压缩)

    这道题其实最简单的方法就是打表,直接DFS会超时,那就先运行一遍,找出1~10的值,打表即可,这里提供DFS和打表的数据 DFS:(白书上的)TLE #include <stdio.h> ...

  5. 编译安装-MySQL5.5

    一.参数选项 1.目录选项 2.存储引擎选项 3.库文件加载选项 二.安装 1.环境准备 2.安装前的系统设置 3.安装执行 4.初始化数据库 5.注册为服务 6.加入环境变量 7.启动服务 8.重新 ...

  6. iOS7 各种问题解决

    1 UITableView 行分割线不到头,短线问题 if ([self.tableView respondsToSelector:@selector(setSeparatorInset:)]) { ...

  7. 项目视频讲解_[HeyJava][尚学堂][CMS文章内容管理系统]

    [HeyJava][尚学堂][CMS文章内容管理系统] http://pan.baidu.com/s/1c0imHrE

  8. iepngfix.htc让PNG-24在IE6中透明的方法(转)

    add:360用的一个方法: <!--[if IE 6]> <script src="http://se.360.cn/js/DD_belatedPNG.js"& ...

  9. DISCUZ X2更换域名注意事项

    国内私募机构九鼎控股打造APP,来就送 20元现金领取地址:http://jdb.jiudingcapital.com/phone.html内部邀请码:C8E245J (不写邀请码,没有现金送)国内私 ...

  10. Flex坐标

    flash和flex针对不同的目的,提供了3种不同的坐标系. 全局的就是(stage级别的) 本地坐标系(组件级别的) 内容坐标系(相对于本地坐标系说的) 这些坐标系的点是可以转换的,并且有相应的方法 ...