Truck History

题目链接:

http://acm.hust.edu.cn/vjudge/contest/124434#problem/E

Description

Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for vegetable delivery, other for furniture, or for bricks. The company has its own code describing each type of a truck. The code is simply a string of exactly seven lowercase letters (each letter on each position has a very special meaning but that is unimportant for this task). At the beginning of company's history, just a single truck type was used but later other types were derived from it, then from the new types another types were derived, and so on.

Today, ACM is rich enough to pay historians to study its history. One thing historians tried to find out is so called derivation plan -- i.e. how the truck types were derived. They defined the distance of truck types as the number of positions with different letters in truck type codes. They also assumed that each truck type was derived from exactly one other truck type (except for the first truck type which was not derived from any other type). The quality of a derivation plan was then defined as

1/Σ(to,td)d(to,td)

where the sum goes over all pairs of types in the derivation plan such that t o is the original type and t d the type derived from it and d(t o,t d) is the distance of the types.

Since historians failed, you are to write a program to help them. Given the codes of truck types, your program should find the highest possible quality of a derivation plan.

Input

The input consists of several test cases. Each test case begins with a line containing the number of truck types, N, 2 <= N <= 2 000. Each of the following N lines of input contains one truck type code (a string of seven lowercase letters). You may assume that the codes uniquely describe the trucks, i.e., no two of these N lines are the same. The input is terminated with zero at the place of number of truck types.

Output

For each test case, your program should output the text "The highest possible quality is 1/Q.", where 1/Q is the quality of the best derivation plan.

Sample Input

4

aaaaaaa

baaaaaa

abaaaaa

aabaaaa

0

Sample Output

The highest possible quality is 1/3.

##题意:

求最小花费使得所有字符串联通. 字符串之间的距离定义为不同字符的个数.


##题解:

裸的最小生成树.


##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 2100
#define mod 100000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;

struct node{

int left,right,cost;

}road[maxn*maxn];

int cmp(node x,node y) {return x.cost<y.cost;}

int p[maxn],m,n;

int find(int x) {return p[x]=(p[x]==x? x:find(p[x]));}

int kruskal()

{

int ans=0;

for(int i=1;i<=n;i++) p[i]=i;

sort(road+1,road+m+1,cmp);

for(int i=1;i<=m;i++)

{

int x=find(road[i].left);

int y=find(road[i].right);

if(x!=y)

{

ans+=road[i].cost;

//printf("%d\n", road[i].cost);

p[x]=y;

}

}

return ans;

}

char str[maxn][10];

int get_dis(int a, int b) {

int ans = 0;

for(int i=0; i<7; i++) {

if(str[a][i] != str[b][i]) ans++;

}

return ans;

}

int main(int argc, char const *argv[])

{

//IN;

while(scanf("%d", &n) != EOF && n)
{
m = 0;
memset(road,0,sizeof(road)); for(int i=1; i<=n; i++) {
scanf("%s", str[i]);
} for(int i=1; i<=n; i++) {
for(int j=i+1; j<=n; j++) {
road[++m].left = i;
road[m].right = j;
road[m].cost = get_dis(i,j);
}
} int ans=kruskal(); printf("The highest possible quality is 1/%d.\n", ans);
} return 0;

}

POJ 1789 Truck History (最小生成树)的更多相关文章

  1. poj 1789 Truck History 最小生成树

    点击打开链接 Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15235   Accepted:  ...

  2. poj 1789 Truck History 最小生成树 prim 难度:0

    Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 19122   Accepted: 7366 De ...

  3. POJ 1789 -- Truck History(Prim)

     POJ 1789 -- Truck History Prim求分母的最小.即求最小生成树 #include<iostream> #include<cstring> #incl ...

  4. Kuskal/Prim POJ 1789 Truck History

    题目传送门 题意:给出n个长度为7的字符串,一个字符串到另一个的距离为不同的字符数,问所有连通的最小代价是多少 分析:Kuskal/Prim: 先用并查集做,简单好写,然而效率并不高,稠密图应该用Pr ...

  5. poj 1789 Truck History

    题目连接 http://poj.org/problem?id=1789 Truck History Description Advanced Cargo Movement, Ltd. uses tru ...

  6. POJ 1789 Truck History【最小生成树简单应用】

    链接: http://poj.org/problem?id=1789 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  7. poj 1789 Truck History【最小生成树prime】

    Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 21518   Accepted: 8367 De ...

  8. POJ 1789 Truck History (Kruskal)

    题目链接:POJ 1789 Description Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks ...

  9. POJ 1789 Truck History (Kruskal 最小生成树)

    题目链接:http://poj.org/problem?id=1789 Advanced Cargo Movement, Ltd. uses trucks of different types. So ...

随机推荐

  1. UINavigationController学习笔记

    http://site.douban.com/129642/widget/notes/5513129/note/187701199/ 1-view controllers的关系:Each custom ...

  2. 转 intent常用功能

    1.从google搜索内容Intent intent = new Intent();intent.setAction(Intent.ACTION_WEB_SEARCH);intent.putExtra ...

  3. SQL server函数大全

    函数类别 作用 聚合函数 执行的操作是将多个值合并为一个值.例如 COUNT.SUM.MIN 和MAX. 配置函数 是一种标量函数,可返回有关配置设置的信息. 转换函数 将值从一种数据类型转换为另一种 ...

  4. C#将HTML导出Excel

    首先这个 不能用ajax 操作,不过 我现在讲的 这个方法和ajax 的效果一样. 你在你需要导出的页面写个方法 function DaoChu () { location.href = " ...

  5. JS省队集训记

    不知不觉省队集训已经结束,离noi也越来越近了呢 论考前实战训练的重要性,让我随便总结一下这几天的考试 Day 1 T1 唉,感觉跟xj测试很像啊?meet in middle,不过这种题不多测是什么 ...

  6. UVa 437 (变形的LIS) The Tower of Babylon

    题意: 有n种类型的长方体,每种长方体的个数都有无限个.当一个长方体的长和宽分别严格小于另一个长方体的长和宽的时候,才可以把这个放到第二个上面去.输出这n种长方体能组成的最大长度. 分析: 虽说每种都 ...

  7. hdu 4635 Strongly connected(强连通)

    考强连通缩点,算模板题吧,比赛的时候又想多了,大概是不自信吧,才开始认真搞图论,把题目想复杂了. 题意就是给你任意图,保证是simple directed graph,问最多加多少条边能使图仍然是si ...

  8. 在VC中显示和处理图片的方法

    落鹤生 发布于 2011-10-21 09:12 点击:344次  来自:blog.csdn.net/mengaim_cn 几种用GDI画图的方法介绍. TAG: GDI   法1:这个方法其实用的是 ...

  9. RMAN 备份详解

    一.数据库备份与RMAN备份的概念 1.数据库完全备份:按归档模式分为归档和非归档 归档模式 打开状态,属于非一致性备份        关闭状态,可以分为一致性和非一致性 非归档模式 打开状态,非一致 ...

  10. mssql的delete用用到被delete的表的别名

    +' delete m from '+@strDBName +'.dbo.m_device as m where not exists ' +' (select 1 from @tmpDevice w ...