Game of Cards

题目链接:

http://acm.hust.edu.cn/vjudge/contest/127406#problem/G

Description


```
Alice and Bob created a new game while at the beach this
summer. All they need is a set of numbered playing cards.
They start by creating P piles with all cards face-up and
select a non-negative number K. After that, they take turns
like this:
1. A player starts by selecting one of the piles.
2. Then, he removes from 0 up to K cards from the top of
that pile, leaving at least one card in the pile.
3. Next, he looks at the card left at the top of the pile and
must remove a number of cards equal to its value (from
the top of the same pile).
Whoever doesn’t have more cards to remove, or whoever
is forced to remove more cards than those available on a pile, loses the game.
In the figure, you can see an example with
two piles and K = 1. The player to move might:
a) Select the first pile and 0 cards to remove,
being forced to remove 1 card from the top
next.
b) Select the second pile and 0 cards to remove,
having to remove 1 card from the
top next.
c) Select the second pile and 1 card to remove,
having to remove 2 cards from the
top next.
Alice has realized that Bob is very good at
this game and will always win if he has the
chance. Luckily, this time Alice is first to play.
Is Alice able to win this game?
Given the description of the piles with all
the cards and the maximum number of cards
they can start to remove, your goal is to find
out whether Alice can win the game if she is the
first to play.
```

Input


The input file contains several test cases, each of them as described below.
The first line contains 2 space separated integers, P, the number of piles, and K, the maximum
number of cards they can start to remove on their turn. The next P lines start with an integer N,
indicating the number of cards on a pile. N space separated integers follow, representing the cards on
that pile from the bottom to the top.
Constraints:
1 ≤ P ≤ 100 Number of piles.
1 ≤ K ≤ 10 Maximum number of cards a player can start to remove.
1 ≤ c ≤ 10 Number on each card.
1 ≤ N ≤ 1 000 Size of each pile.

Output


For each test case, a single string, stating ‘Alice can win.’ or ‘Bob will win.’, as appropriate.
Notes:
Explanation of output 1. The piles are the same, so Bob will always be able to mirror whatever
move Alice makes.
Explanation of output 2. Alice can start by removing 0 cards from the second pile and then 1 card
from its top. Two legal moves will be possible next, Bob will make one and Alice the other.

Sample Input


4 1
4 1 1 1 1
6 2 1 2 1 2 1
4 1 1 1 1
6 2 1 2 1 2 1
2 1
1 1
3 1 2 1
2 2
5 3 2 1 2 1
5 5 4 3 2 1

Sample Output


Bob will win.
Alice can win.
Alice can win.


##题意:

有n堆牌,每回合可以从一堆中先抽[0,k]张牌,但是这一抽后必须使得这一堆非空. 然后看牌堆顶的数字,再抽这么多的牌.
不能操作者输.


##题解:

典型的sg函数. 单独考虑每一堆.
以长度为牌堆的状态. sg[x] 表示牌堆中后x张牌的sg值.
对于每个状态,枚举取的个数[0,k]来得到拓展状态.
对于不可达到的状态,这里可以将其sg值设为-1. (如果后继状态都是-1那当前状态为0,即必败).


##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 1010
#define mod 100000007
#define inf 0x3f3f3f3f
#define mid(a,b) ((a+b)>>1)
#define IN freopen("in.txt","r",stdin);
using namespace std;

int p,k;

int sg[maxn];

bool vis[maxn];

int pile[maxn], cnt;

int sg_check(int size, int take) {

int top = pile[size - take];

if(take + top > size) return -1;

return sg[size-take-top];

}

void get_sg() {

memset(sg, 0, sizeof(sg));

for(int i=1; i<=cnt; i++) {
/*误把初始化放到外面导致WA一发*/
memset(vis, 0, sizeof(vis));
for(int j=0; j<=k&&j<i; j++) {
int tmp = sg_check(i, j);
if(tmp != -1) vis[tmp] = 1;
}
for(int j=0; j<maxn; j++) if(!vis[j]) {
sg[i] = j; break;
}
}

}

int main(int argc, char const *argv[])

{

//IN;

while(scanf("%d %d", &p,&k) != EOF)
{
int ans = 0;
while(p--) {
scanf("%d", &cnt);
for(int i=1; i<=cnt; i++)
scanf("%d", &pile[i]);
get_sg();
ans ^= sg[cnt];
} if(ans) puts("Alice can win.");
else puts("Bob will win.");
} return 0;

}

UVALive 7278 Game of Cards (sg函数)的更多相关文章

  1. LA 7278 Game of Cards(SG函数)

    https://vjudge.net/problem/UVALive-7278 题意: 两个人玩游戏,现在有n堆牌,轮到自己时,先在牌堆中选一堆牌,先在牌堆中选择拿走0~k张牌(至少得剩下一张),然后 ...

  2. Game of Cards Gym - 101128G (SG函数)

    Problem G: Game of Cards \[ Time Limit: 1 s \quad Memory Limit: 256 MiB \] 题意 题意就是给出\(n\)堆扑克牌,然后给出一个 ...

  3. HDU 5795 A Simple Nim 打表求SG函数的规律

    A Simple Nim Problem Description   Two players take turns picking candies from n heaps,the player wh ...

  4. 【转】博弈—SG函数

    转自:http://chensmiles.blog.163.com/blog/static/12146399120104644141326/ http://blog.csdn.net/xiaofeng ...

  5. HDU 1848 Fibonacci again and again【SG函数】

    对于Nim博弈,任何奇异局势(a,b,c)都有a^b^c=0. 延伸: 任何奇异局势(a1, a2,… an)都满足 a1^a2^…^an=0 首先定义mex(minimal excludant)运算 ...

  6. POJ2425 A Chess Game[博弈论 SG函数]

    A Chess Game Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 3917   Accepted: 1596 Desc ...

  7. bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 973  Solved: 599[Submit][Status ...

  8. BZOJ1188 [HNOI2007]分裂游戏(SG函数)

    传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...

  9. sg函数与博弈论2

    参考链接: http://blog.sina.com.cn/s/blog_51cea4040100h3l9.html 这篇主要就是讲anti-sg.multi-sg和every-sg的. 例1 poj ...

随机推荐

  1. IIS发布报错

    IIS发布报错一般原因 ISAPI和CGI限制作为IIS与ASP.NET的连接桥梁

  2. Android的NDK开发(4)————JNI数据结构之JNINativeMethod

    转至:http://blog.csdn.net/conowen/article/details/7524744 1.JNINativeMethod 结构体的官方定义 typedef struct { ...

  3. Hibernate--基本映射标签和属性介绍

    一.映射文件的基本结构举例: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE hiberna ...

  4. VS2015中的异常配置

    The New Exception Settings Window in Visual Studio 2015Managing Exceptions with the Debugger Underst ...

  5. sort+结构体实现二级排序

    之前介绍的sort函数由于其效率较高,使用较为简单让我用起来那叫一个爽,今天再写一篇使用sort+结构体实现二级排序的方法. 还是先想个问题吧,比如我想输入5个同学的名字和身高,然后得到他们身高的降序 ...

  6. bzoj3571

    同样的最小乘积XXX模型,这里显然是二分图带权匹配 我不会写KM……于是写了个费用流,由于是稠密图,会退化到n^4 然后本地跑了56s,交上去过了………………一定是我电脑太慢…… 改天写个KM吧 *; ...

  7. UVa 1401 (Tire树) Remember the Word

    d(i)表示从i开始的后缀即S[i, L-1]的分解方法数,字符串为S[0, L-1] 则有d(i) = sum{ d(i+len(x)) | 单词x是S[i, L-1]的前缀 } 递推边界为d(L) ...

  8. UVa 1640 (计数) The Counting Problem

    题意: 统计[a, b]或[b, a]中0~9这些数字各出现多少次. 分析: 这道题可以和UVa 11361比较来看. 同样是利用这样一个“模板”,进行区间的分块,加速运算. 因为这里没有前导0,所以 ...

  9. UVa 11584 Partitioning by Palindromes【DP】

    题意:给出一个字符串,问最少能够划分成多少个回文串 dp[i]表示以第i个字母结束最少能够划分成的回文串的个数 dp[i]=min(dp[i],dp[j]+1)(如果从第j个字母到第i个字母是回文串) ...

  10. UVA 11354 Bond(最小瓶颈路+倍增)

    题意:问图上任意两点(u,v)之间的路径上,所经过的最大边权最小为多少? 求最小瓶颈路,既是求最小生成树.因为要处理多组询问,所以需要用倍增加速. 先处理出最小生成树,prim的时间复杂度为O(n*n ...