【NLP】揭秘马尔可夫模型神秘面纱系列文章(五)
向前向后算法解决隐马尔可夫模型机器学习问题
作者:白宁超
2016年7月12日14:28:10
摘要:最早接触马尔可夫模型的定义源于吴军先生《数学之美》一书,起初觉得深奥难懂且无什么用场。直到学习自然语言处理时,才真正使用到隐马尔可夫模型,并体会到此模型的妙用之处。马尔可夫模型在处理序列分类时具体强大的功能,诸如解决:词类标注、语音识别、句子切分、字素音位转换、局部句法剖析、语块分析、命名实体识别、信息抽取等。另外广泛应用于自然科学、工程技术、生物科技、公用事业、信道编码等多个领域。本文写作思路如下:第一篇对马尔可夫个人简介和马尔科夫链的介绍;第二篇介绍马尔可夫链(显马尔可夫模型)和隐马尔可夫模型以及隐马尔可夫模型的三大问题(似然度、编码、参数学习);第三至五篇逐一介绍三大问题相关算法:(向前算法、维特比算法、向前向后算法);最后非常得益于冯志伟先生自然语言处理教程一书,冯老研究自然语言几十余载,在此领域别有建树。(本文原创,转载注明出处:向前向后算法解决隐马尔可夫模型机器学习问题 )
目录
【自然语言处理:马尔可夫模型(一)】:初识马尔可夫和马尔可夫链
【自然语言处理:马尔可夫模型(二)】:马尔可夫模型与隐马尔可夫模型
【自然语言处理:马尔可夫模型(三)】:向前算法解决隐马尔可夫模型似然度问题
【自然语言处理:马尔可夫模型(四)】:维特比算法解决隐马尔可夫模型解码问题(中文句法标注)
【自然语言处理:马尔可夫模型(五)】:向前向后算法解决隐马尔可夫模型机器学习问题
马尔可夫个人简介
安德烈·马尔可夫,俄罗斯人,物理-数学博士,圣彼得堡科学院院士,彼得堡数学学派的代表人物,以数论和概率论方面的工作著称,他的主要著作有《概率演算》等。1878年,荣获金质奖章,1905年被授予功勋教授称号。马尔可夫是彼得堡数学学派的代表人物。以数论和概率论方面的工作著称。他的主要著作有《概率演算》等。在数论方面,他研究了连分数和二次不定式理论 ,解决了许多难题 。在概率论中,他发展了矩阵法,扩大了大数律和中心极限定理的应用范围。马尔可夫最重要的工作是在1906~1912年间,提出并研究了一种能用数学分析方法研究自然过程的一般图式——马尔可夫链。同时开创了对一种无后效性的随机过程——马尔可夫过程的研究。马尔可夫经多次观察试验发现,一个系统的状态转换过程中第n次转换获得的状态常取决于前一次(第(n-1)次)试验的结果。马尔可夫进行深入研究后指出:对于一个系统,由一个状态转至另一个状态的转换过程中,存在着转移概率,并且这种转移概率可以依据其紧接的前一种状态推算出来,与该系统的原始状态和此次转移前的马尔可夫过程无关。马尔可夫链理论与方法在现代已经被广泛应用于自然科学、工程技术和公用事业中。
1 向前向后算法概述
向前向后算法解决:问题3(学习问题):给定一个观察序列O和一个HMM中的状态集合,自动学习HMM的参数A和B。
此算法涉及机器学习,较为复杂,笔者不打算深入讲解,感兴趣的同学可以参考冯志伟《自然语言处理简明教程》P594—602,本文只是做为了解方面讲解。
鲍姆-韦尔奇算法(Baum-Welch algorithm):训练HMM的标准算法是向前向后算法,这是期望最大化算法或者叫鲍姆-韦尔奇算法,这个算法帮助我们训练HMM的转移概率B和发射概率A。
鲍姆-韦尔奇算法思路:
(1) 反复的估计所得的计数,从转移概率和观察概率的一个估计值开始,反复的使用这些估计概率来推出越来越好的概率。
(2) 对于一个观察,计算它向前概率,从而得到我们估计的概率。然后把这个估计的概率量,在对于这个向前概率有贡献的所有不同路径上进行分摊。
向后概率:向后概率记住 β是对于给定自动机 λ,在状态i和时刻t观察下一个时刻t+1到终点的观察概率,用公式表示如下:
计算向前概率相似的归纳法来计算向后概率:
2 向后归纳的步骤
3 计算在时刻t和状态j的向后概率:公式较多,采用笔记如下
4 算法推导过程:公式较多,笔记如下
5 迭代向前向后算法核心:
6 参考文献
【1】统计自然语言处理基础 Christopher.Manning等 著 宛春法等 译
【2】自然语言处理简明教程 冯志伟 著
【3】数学之美 吴军 著
【4】Viterbi算法分析文章 王亚强
声明:关于此文各个篇章,本人采取梳理扼要,顺畅通明的写作手法。一则参照相关资料二则根据自己理解进行梳理。避免冗杂不清,每篇文章读者可理清核心知识,再找相关文献系统阅读。另外,要学会举一反三,不要死盯着定义或者某个例子不放。诸如:此文章例子冰淇淋数量(观察值)与天气冷热(隐藏值)例子,读者不免问道此有何用?我们将冰淇淋数量换成中文文本或者语音(观察序列),将天气冷热换成英文文本或者语音文字(隐藏序列)。把这个问题解决了不就是解决了文本翻译、语音识别、自然语言理解等等。解决了自然语言的识别和理解,再应用到现在机器人或者其他设备中,不就达到实用和联系现实生活的目的了?本文原创,转载注明出处:向前向后算法解决隐马尔可夫模型机器学习问题
【NLP】揭秘马尔可夫模型神秘面纱系列文章(五)的更多相关文章
- 【NLP】揭秘马尔可夫模型神秘面纱系列文章(一)
初识马尔可夫和马尔可夫链 作者:白宁超 2016年7月10日20:34:20 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无什么用场.直到学习自然语言处 ...
- 【NLP】揭秘马尔可夫模型神秘面纱系列文章(二)
马尔可夫模型与隐马尔可夫模型 作者:白宁超 2016年7月11日15:31:11 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无什么用场.直到学习自然语 ...
- 【NLP】揭秘马尔可夫模型神秘面纱系列文章(三)
向前算法解决隐马尔可夫模型似然度问题 作者:白宁超 2016年7月11日22:54:57 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无什么用场.直到学 ...
- 【NLP】揭秘马尔可夫模型神秘面纱系列文章(四)
维特比算法解决隐马尔可夫模型解码问题(中文句法标注) 作者:白宁超 2016年7月12日14:08:28 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无 ...
- HMM隐马尔可夫模型来龙去脉(一)
目录 隐马尔可夫模型HMM学习导航 一.认识贝叶斯网络 1.概念原理介绍 2.举例解析 二.马尔可夫模型 1.概念原理介绍 2.举例解析 三.隐马尔可夫模型 1.概念原理介绍 2.举例解析 四.隐马尔 ...
- HMM 自学教程(四)隐马尔科夫模型
本系列文章摘自 52nlp(我爱自然语言处理: http://www.52nlp.cn/),原文链接在 HMM 学习最佳范例,这是针对 国外网站上一个 HMM 教程 的翻译,作者功底很深,翻译得很精彩 ...
- 【NLP学习其二】什么是隐马尔可夫模型HMM?
概念 隐马尔可夫模型描述的是两个时序序列联合分布p(x,y)的概率模型,其中包含了两个序列: x序列外界可见(外界指的是观测者),称为观测序列(obsevation seuence) y序列外界不可见 ...
- NLP | 自然语言处理 - 标注问题与隐马尔科夫模型(Tagging Problems, and Hidden Markov Models)
什么是标注? 在自然语言处理中有一个常见的任务,即标注.常见的有:1)词性标注(Part-Of-Speech Tagging),将句子中的每一个词标注词性,比如名词.动词等:2)实体标注(Name E ...
- NLP —— 图模型(一)隐马尔可夫模型(Hidden Markov model,HMM)
本文简单整理了以下内容: (一)贝叶斯网(Bayesian networks,有向图模型)简单回顾 (二)隐马尔可夫模型(Hidden Markov model,HMM) 写着写着还是写成了很规整的样 ...
随机推荐
- Be Better:遇见更好的自己-2016年记
其实并不能找到好的词语来形容过去的一年,感觉就如此平淡的过了!没有了毕业的稚气,看事情淡了,少了一丝浮躁,多了一分认真.2016也许就是那句话-多读书,多看报,少吃零食多睡觉,而我更愿意说--Be B ...
- async & await 的前世今生(Updated)
async 和 await 出现在C# 5.0之后,给并行编程带来了不少的方便,特别是当在MVC中的Action也变成async之后,有点开始什么都是async的味道了.但是这也给我们编程埋下了一些隐 ...
- Java基础Map接口+Collections
1.Map中我们主要讲两个接口 HashMap 与 LinkedHashMap (1)其中LinkedHashMap是有序的 怎么存怎么取出来 我们讲一下Map的增删改查功能: /* * Ma ...
- 谈谈一些有趣的CSS题目(五)-- 单行居中,两行居左,超过两行省略
开本系列,讨论一些有趣的 CSS 题目,抛开实用性而言,一些题目为了拓宽一下解决问题的思路,此外,涉及一些容易忽视的 CSS 细节. 解题不考虑兼容性,题目天马行空,想到什么说什么,如果解题中有你感觉 ...
- SignalR系列目录
[置顶]用SignalR 2.0开发客服系统[系列1:实现群发通讯] [置顶]用SignalR 2.0开发客服系统[系列2:实现聊天室] [置顶]用SignalR 2.0开发客服系统[系列3:实现点对 ...
- CSS入门常见的问题
写在前面:本文简单介绍一下css的三大特性:层叠性.继承性.优先级.以及margin,padding,浮动,定位几个知识点.限于水平,不深入探讨,仅作为学习总结. 1,三特性 1)层叠性:同标签同权重 ...
- 关于CSS inline-block、BFC以及外边距合并的几个小问题
CSS inline-block和BCF对于初学者来说,总是弄不太明白,下面记录下我在学习这块知识的过程中遇到的几个问题,供大家参考,有不足的地方,欢迎大家批评指正. 一.在什么场景下会出现外边距合并 ...
- BPM Domino集成解决方案
一.需求分析 Lotus Notes/Domino是IBM的协同办公平台,在国内有广泛的用户. 但由于推出年头较早.采用文档数据库等特点, 导致其流程集成能力弱.统计分析难.不支持移动办公等问题,很多 ...
- 机器学习之sklearn——EM
GMM计算更新∑k时,转置符号T应该放在倒数第二项(这样计算出来结果才是一个协方差矩阵) from sklearn.mixture import GMM GMM中score_samples函数第 ...
- [异常特工]android常见bug跟踪
前言 对app的线上bug的收集(友盟.云捕等)有时会得到这样的异常堆栈信息:没有一行代码是有关自身程序代码的.这使得对bug的解决无从下手,根据经验,内存不足OOM,Dialog关闭,ListVie ...