Kafka无消息丢失配置
Kafka到底会不会丢数据(data loss)? 通常不会,但有些情况下的确有可能会发生。下面的参数配置及Best practice列表可以较好地保证数据的持久性(当然是trade-off,牺牲了吞吐量)。笔者会在该列表之后对列表中的每一项进行讨论,有兴趣的同学可以看下后面的分析。
- block.on.buffer.full = true
- acks = all
- retries = MAX_VALUE
- max.in.flight.requests.per.connection = 1
- 使用KafkaProducer.send(record, callback)
- callback逻辑中显式关闭producer:close(0)
- unclean.leader.election.enable=false
- replication.factor = 3
- min.insync.replicas = 2
- replication.factor > min.insync.replicas
- enable.auto.commit=false
- 消息处理完成之后再提交位移
给出列表之后,我们从两个方面来探讨一下数据为什么会丢失:
1. Producer端
目前比较新版本的Kafka正式替换了Scala版本的old producer,使用了由Java重写的producer。新版本的producer采用异步发送机制。KafkaProducer.send(ProducerRecord)方法仅仅是把这条消息放入一个缓存中(即RecordAccumulator,本质上使用了队列来缓存记录),同时后台的IO线程会不断扫描该缓存区,将满足条件的消息封装到某个batch中然后发送出去。显然,这个过程中就有一个数据丢失的窗口:若IO线程发送之前client端挂掉了,累积在accumulator中的数据的确有可能会丢失。
Producer的另一个问题是消息的乱序问题。假设客户端代码依次执行下面的语句将两条消息发到相同的分区
producer.send(record1);
producer.send(record2);
如果此时由于某些原因(比如瞬时的网络抖动)导致record1没有成功发送,同时Kafka又配置了重试机制和max.in.flight.requests.per.connection大于1(默认值是5,本来就是大于1的),那么重试record1成功后,record1在分区中就在record2之后,从而造成消息的乱序。很多某些要求强顺序保证的场景是不允许出现这种情况的。
鉴于producer的这两个问题,我们应该如何规避呢??对于消息丢失的问题,很容易想到的一个方案就是:既然异步发送有可能丢失数据, 我改成同步发送总可以吧?比如这样:
producer.send(record).get();
这样当然是可以的,但是性能会很差,不建议这样使用。因此特意总结了一份配置列表。个人认为该配置清单应该能够比较好地规避producer端数据丢失情况的发生:(特此说明一下,软件配置的很多决策都是trade-off,下面的配置也不例外:应用了这些配置,你可能会发现你的producer/consumer 吞吐量会下降,这是正常的,因为你换取了更高的数据安全性)
- block.on.buffer.full = true 尽管该参数在0.9.0.0已经被标记为“deprecated”,但鉴于它的含义非常直观,所以这里还是显式设置它为true,使得producer将一直等待缓冲区直至其变为可用。否则如果producer生产速度过快耗尽了缓冲区,producer将抛出异常
- acks=all 很好理解,所有follower都响应了才认为消息提交成功,即"committed"
- retries = MAX 无限重试,直到你意识到出现了问题:)
- max.in.flight.requests.per.connection = 1 限制客户端在单个连接上能够发送的未响应请求的个数。设置此值是1表示kafka broker在响应请求之前client不能再向同一个broker发送请求。注意:设置此参数是为了避免消息乱序
- 使用KafkaProducer.send(record, callback)而不是send(record)方法 自定义回调逻辑处理消息发送失败
- callback逻辑中最好显式关闭producer:close(0) 注意:设置此参数是为了避免消息乱序
- unclean.leader.election.enable=false 关闭unclean leader选举,即不允许非ISR中的副本被选举为leader,以避免数据丢失
- replication.factor >= 3 这个完全是个人建议了,参考了Hadoop及业界通用的三备份原则
- min.insync.replicas > 1 消息至少要被写入到这么多副本才算成功,也是提升数据持久性的一个参数。与acks配合使用
- 保证replication.factor > min.insync.replicas 如果两者相等,当一个副本挂掉了分区也就没法正常工作了。通常设置replication.factor = min.insync.replicas + 1即可
2. Consumer端
consumer端丢失消息的情形比较简单:如果在消息处理完成前就提交了offset,那么就有可能造成数据的丢失。由于Kafka consumer默认是自动提交位移的,所以在后台提交位移前一定要保证消息被正常处理了,因此不建议采用很重的处理逻辑,如果处理耗时很长,则建议把逻辑放到另一个线程中去做。为了避免数据丢失,现给出两点建议:
- enable.auto.commit=false 关闭自动提交位移
- 在消息被完整处理之后再手动提交位移
Kafka无消息丢失配置的更多相关文章
- Kafka设计解析(十一)Kafka无消息丢失配置
转载自 huxihx,原文链接 Kafka无消息丢失配置 目录 一.Producer端二.Consumer端 Kafka到底会不会丢数据(data loss)? 通常不会,但有些情况下的确有可能会发生 ...
- kafka实现无消息丢失与精确一次语义(exactly once)处理
在很多的流处理框架的介绍中,都会说kafka是一个可靠的数据源,并且推荐使用Kafka当作数据源来进行使用.这是因为与其他消息引擎系统相比,kafka提供了可靠的数据保存及备份机制.并且通过消费者位移 ...
- Kafka消息丢失
1.Kafka消息丢失的情况: (1)auto.commit.enable=true,消费端自动提交offersets设置为true,当消费者拉到消息之后,还没有处理完 commit interval ...
- Kafka的消息会丢失和重复吗?——如何实现Kafka精确传递一次语义
我们都知道Kafka的吞吐量很大,但是Kafka究竟会不会丢失消息呢?又会不会重复消费消息呢? 图 无人机实时监控 有很多公司因为业务要求必须保证消息不丢失.不重复的到达,比如无人机实时监控系统, ...
- Kafka leader副本选举与消息丢失场景讨论
如果某个broker挂了,leader副本在该broker上的分区就要重新进行leader选举.来简要描述下leader选举的过程 1.4.1 KafkaController会监听ZooKeeper的 ...
- RabbitMQ,RocketMQ,Kafka 事务性,消息丢失和消息重复发送的处理策略
消息队列常见问题处理 分布式事务 什么是分布式事务 常见的分布式事务解决方案 基于 MQ 实现的分布式事务 本地消息表-最终一致性 MQ事务-最终一致性 RocketMQ中如何处理事务 Kafka中如 ...
- Kafka在高并发的情况下,如何避免消息丢失和消息重复?kafka消费怎么保证数据消费一次?数据的一致性和统一性?数据的完整性?
1.kafka在高并发的情况下,如何避免消息丢失和消息重复? 消息丢失解决方案: 首先对kafka进行限速, 其次启用重试机制,重试间隔时间设置长一些,最后Kafka设置acks=all,即需要相应的 ...
- 在Centos 7上安装配置 Apche Kafka 分布式消息系统集群
Apache Kafka是一种颇受欢迎的分布式消息代理系统,旨在有效地处理大量的实时数据.Kafka集群不仅具有高度可扩展性和容错性,而且与其他消息代理(如ActiveMQ和RabbitMQ)相比,还 ...
- 实际业务处理 Kafka 消息丢失、重复消费和顺序消费的问题
关于 Kafka 消息丢失.重复消费和顺序消费的问题 消息丢失,消息重复消费,消息顺序消费等问题是我们使用 MQ 时不得不考虑的一个问题,下面我结合实际的业务来和你分享一下解决方案. 消息丢失问题 比 ...
随机推荐
- Unity 序列化
Script Serialization http://docs.unity3d.com/Manual/script-Serialization.html 自定义序列化及例子: http://docs ...
- python学习笔记(python介绍)
为什么要学python? python和shell的比较,和PHP.和JAVA比较 运维开发只是用到python的很小一部分 python在一些知名公司的应用: 谷歌:python的创始人原来在谷歌工 ...
- 看图理解JWT如何用于单点登录
单点登录是我比较喜欢的一个技术解决方案,一方面他能够提高产品使用的便利性,另一方面他分离了各个应用都需要的登录服务,对性能以及工作量都有好处.自从上次研究过JWT如何应用于会话管理,加之以前的项目中也 ...
- 如何理解DT将是未来IT的转型之路?
如今的IT面临着内忧外患的挑战. 一方面,企业多多少少都建立了信息化,有些企业或集团甚至会有数几十个分公司,包含直销.代理.零售以及第三方物流等多种业态.越是复杂的业务,信息化建设越困难,比如运用大量 ...
- SQL Server常见问题介绍及快速解决建议
前言 本文旨在帮助SQL Server数据库的使用人员了解常见的问题,及快速解决这些问题.这些问题是数据库的常规管理问题,对于很多对数据库没有深入了解的朋友提供一个大概的常见问题框架. 下面一些问题是 ...
- linux上使用google身份验证器(简版)
系统:centos6.6 下载google身份验证包google-authenticator-master(其实只是一个.zip文件,在windwos下解压,然后传进linux) #cd /data/ ...
- 烂泥:数据库管理之phpmyadmin免密码配置
本文由ilanniweb提供友情赞助,首发于烂泥行天下 想要获得更多的文章,可以关注我的微信ilanniweb 其实这篇文章很早就想写了,但是一直没有时间.刚好今天下午稍微空了点,就把这篇文章整理出来 ...
- 萌新笔记——linux下查看内存的使用情况
windows上有各种软件可以进行"一键加速"之类的操作,释放掉一些内存(虽然我暂时不知道是怎么办到的,有待后续学习).而任务管理器也可以很方便地查看各进程使用的内存情况,如下图: ...
- Java集合---ConcurrentHashMap原理分析
集合是编程中最常用的数据结构.而谈到并发,几乎总是离不开集合这类高级数据结构的支持.比如两个线程需要同时访问一个中间临界区(Queue),比如常会用缓存作为外部文件的副本(HashMap).这篇文章主 ...
- 页面元素坐标和偏移(clientX/pageX/screenX/layerX/offsetWidth/scrollWidth/clientWidth等)相关整理
鼠标事件都是在特定位置发生的,我们可以通过event事件对象的各种属性来获得事件发生的坐标位置,有相对于视口的,有相对于整个文档的,同样页面元素的位置也有相对视口的,也有滚动后的,这些都比较容易混淆, ...