题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n)

  此题和UVA 11426 一样,不过n的范围只有20000,但是最多有20000组数据。 当初我直接照搬UVA11426,结果超时,因为没有预处理所有的结果(那题n最多4000005,但最多只有100组数据),该题数据太多了额。。。

思路:令sum(n)=gcd(1,n)+gcd(2,n)+...+gcd(n-1,n),则所求结果ans(n)=sum(2)+sum(3)+...+sum(n)
      只需求出sum(n),就可以推出所有答案:ans(n)=ans(n-1)+sum(n)(我当时怎么就没想到呢,额。。。)。
      接下来重点就是求sum(n):
      注意到所有gcd(x,n)都是n的约数,可以按照这个约数进行分类,用g(n,i)表示满足g(x,n)=i且x<n的正整数个数,
      则sum(n)=sum{i*g(n,i)|i是n的约数}。注意到gcd(x,n)=i的充要条件是gcd(x/i,n/i)=1
      (额,我是看到书上的这个提示,才想到怎么做的。。。),因此满足条件的x/i有phi(n/i)个(欧拉函数),说明g(n,i)=phi(n/i)。
      由于时间限制,同素数筛选法,我们需要对于每个i枚举它的倍数n并更新sum(n),这些都在预处理中完成。

#include <iostream>
#include <stdio.h>
#include <string.h>
/*
数论题 题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 思路:令sum(n)=gcd(1,n)+gcd(2,n)+...+gcd(n-1,n),则所求结果ans(n)=f(2)+f(3)+...+f(n)
只需求出f(n),就可以推出所有答案:ans(n)=ans(n-1)+sum(n)(我当时怎么就没想到呢,额。。。)。
接下来重点就是求sum(n):
注意到所有gcd(x,n)都是n的约数,可以按照这个约数进行分类,用g(n,i)表示满足g(x,n)=i且x<n的正整数个数,
则sum(n)=sum{i*g(n,i)|i是n的约数}。注意到gcd(x,n)=i的充要条件是gcd(x/i,n/i)=1
(额,我是看到书上的这个提示,才想到怎么做的。。。),因此满足条件的x/i有phi(n/i)个(欧拉函数),说明g(n,i)=phi(n/i)。
由于时间限制,同素数筛选法,我们需要对于每个i枚举它的倍数n并更新sum(n),这些都在预处理中完成。
*/
using namespace std;
const int maxn=;
int phi[maxn];
long long sum[maxn];
long long ans[maxn];
void init(){
memset(phi,,sizeof(phi));
memset(sum,,sizeof(sum));
memset(ans,,sizeof(ans));
phi[]=;
for(int i=;i<maxn;i++){
if(!phi[i]){
for(int j=i;j<maxn;j+=i){
if(!phi[j])
phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
}
long long i,j;
for(i=;i<maxn;i++){
for(j=;i*j<maxn;j++){
/*
//原来第二次循环j是从1~maxn,循环中加个if条件,预处理都运行很慢很慢,超时
if(i*j>=maxn)
continue;
*/
sum[i*j]+=phi[i]*j; //n=i*j,j为n和x的公约数,类似于素数筛选法
}
}
/*
//白书上的代码 for(int i=1;i<maxn;i++){
for(int n=i*2;n<maxn;n+=i)
sum[n]+=i*phi[n/i];
}
*/
ans[]=sum[];
for(int i=;i<maxn;i++){
ans[i]=ans[i-]+sum[i]; //怎么都忘记可以利用前一项的结果啊!!!
}
}
int main()
{
init();
int n;
long long result;
while(scanf("%d",&n),n){
printf("%lld\n",ans[n]); //UVA上,注意是lld }
return ;
}

UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)的更多相关文章

  1. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  2. UVA 11426 GCD - Extreme (II) 欧拉函数

    分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include ...

  3. UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)

    Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...

  4. uva 11426 GCD - Extreme (II) (欧拉函数打表)

    题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...

  5. UVA 11426 - GCD - Extreme (II) 欧拉函数-数学

    Given the value of N, you will have to find the value of G. The definition of G is given below:G =i< ...

  6. UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)

    UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...

  7. UVA11426 GCD - Extreme (II)---欧拉函数的运用

    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  8. GCD - Extreme(欧拉函数变形)

    题目链接:https://vjudge.net/problem/UVA-11426 题目大意: 给出整数n∈[2,4000000],求解∑gcd(i,j),其中(i,j)满足1≤i<j≤n. 的 ...

  9. UVA11426 GCD - Extreme (II) —— 欧拉函数

    题目链接:https://vjudge.net/problem/UVA-11426 题意: 求 ∑ gcd(i,j),其中 1<=i<j<=n . 题解:1. 欧拉函数的定义:满足 ...

随机推荐

  1. CAD格式DWF嵌入到自己的网页中展示--Autodesk Design Review

    网页上嵌入CAD图纸,用的 Autodesk Design Review控件嵌入IE, 网上的 dwf viewer方式没成功. Head之间 <script type="text/j ...

  2. MongoDB的分组统计 group

    mongodb中的分组聚合用$group,而且处理的最大数据量为100M如果超出需要写入到磁盘,使用格式如下: { $group: { _id: <expression>, <fie ...

  3. android 在标题栏加上按钮

    public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); requestWindowF ...

  4. VB最新使用教程

    Visual Basic是一种由 微软公司开发的结构化的.模块化的.面向对象的.包含协助开发环境的事件驱动为机制的可视化程序设计语言.这是一种可用于微软自家产品开发的语言.它源自于BASIC编程语言. ...

  5. c++中的指针问题

    c++和C语言一样,都有指针,指针通过变量的存储位置访问变量内容并进行修改,与引用不同的是,引用仅仅是给变量取一个别名,并不是一个对象,而指针则是一个对象. #include<iostream& ...

  6. WPF 控件DataGrid绑定

    WPF 手动绑定 DataGrid 例子:前台:<DataGrid AutoGenerateColumns="False" Name="dataGrid1" ...

  7. .NET Framework 3.5 安装错误:0x800F0906、0x800F081F、0x800F0907

    使用Add-WindowsFeature 照成的问题 I get the failure below..  If I pick the Server 2012 R2 image from 8/15/2 ...

  8. java排序集锦

    java实现排序的一些方法,来自:http://www.javaeye.com/topic/548520 package sort; import java.util.Random; /** * 排序 ...

  9. google api , the problem of null refresh token

    http://stackoverflow.com/questions/10827920/google-oauth-refresh-token-is-not-being-received The ref ...

  10. LintCode-Search 2D Matrix II

    Write an efficient algorithm that searches for a value in an m x n matrix, return the occurrence of ...