Ehcache(2.9.x) - Configuration Guide, Configuring Storage Tiers
About Storage Tiers
Ehcache has three storage tiers, summarized here:
- Memory store – Heap memory that holds a copy of the hottest subset of data from the off-heap store. Subject to Java GC.
- Off-heap store – Limited in size only by available RAM. Not subject to Java GC. Can store serialized data only. Provides overflow capacity to the memory store.
- Disk store – Backs up in-memory data and provides overflow capacity to the other tiers. Can store serialized data only.
This document defines the standalone storage tiers and their suitable element types and then details the configuration for each storage tier.
Before running in production, it is strongly recommended that you test the tiers with the actual amount of data you expect to use in production. For information about sizing the tiers, refer to Sizing Storage Tiers.
Configuring Memory Store
The memory store is always enabled and exists in heap memory. For the best performance, allot as much heap memory as possible without triggering garbage collection (GC) pauses, and use the off-heap store to hold the data that cannot fit in heap (without causing GC pauses).
The memory store has the following characteristics:
- Accepts all data, whether serializable or not
- Fastest storage option
- Thread safe for use by multiple concurrent threads
The memory store is the top tier and is automatically used by Ehcache to store the data hotset because it is the fastest store. It requires no special configuration to enable, and its overall size is taken from the Java heap size. Since it exists in the heap, it is limited by Java GC constraints.
Memory Use, Spooling, and Expiry Strategy in the Memory Store
All caches specify their maximum in-memory size, in terms of the number of elements, at configuration time.
When an element is added to a cache and it goes beyond its maximum memory size, an existing element is either deleted, if overflow is not enabled, or evaluated for spooling to another tier, if overflow is enabled. The overflow options are overflowToOffHeap and <persistence> (disk store).
If overflow is enabled, a check for expiry is carried out. If it is expired it is deleted; if not it is spooled. The eviction of an item from the memory store is based on the optionalMemoryStoreEvictionPolicy attribute specified in the configuration file. Legal values are LRU (default), LFU and FIFO:
- Least Recently Used (LRU) — LRU is the default setting. The last-used timestamp is updated when an element is put into the cache or an element is retrieved from the cache with a get call.
- Least Frequently Used (LFU) — For each get call on the element the number of hits is updated. When a put call is made for a new element (and assuming that the max limit is reached for the memory store) the element with least number of hits, the Less Frequently Used element, is evicted.
- First In First Out (FIFO) — Elements are evicted in the same order as they come in. When a put call is made for a new element (and assuming that the max limit is reached for the memory store) the element that was placed first (First-In) in the store is the candidate for eviction (First-Out).
For all the eviction policies there are also putQuiet() and getQuiet() methods which do not update the last used timestamp.
When there is a get() or a getQuiet() on an element, it is checked for expiry. If expired, it is removed and null is returned. Note that at any point in time there will usually be some expired elements in the cache. Memory sizing of an application must always take into account the maximum size of each cache.
Tip: calculateInMemorySize() is a convenient method that can provide an estimate of the size (in bytes) of the memory store. It returns the serialized size of the cache, providing a rough estimate. Do not use this method in production as it is has a negative effect on performance.
An alternative is to have an expiry thread. This is a trade-off between lower memory use and short locking periods and CPU utilization. The design is in favor of the latter. For those concerned with memory use, simply reduce the tier size. For more information, refer to Sizing Storage Tiers.
Configuring Disk Store
The disk store provides a thread-safe disk-spooling facility that can be used for either additional storage or persisting data through system restarts.
This section describes local disk usage. You can find additional information about configuring the disk store in Configuring Restartability and Persistence.
Serialization
Only data that is Serializable can be placed in the disk store. Writes to and from the disk use ObjectInputStream and the Java serialization mechanism. Any non-serializable data overflowing to the disk store is removed and a NotSerializableException is thrown.
Serialization speed is affected by the size of the objects being serialized and their type. It has been found that:
- The serialization time for a Java object consisting of a large Map of String arrays was 126ms, where the serialized size was 349,225 bytes.
- The serialization time for a byte[] was 7ms, where the serialized size was 310,232 bytes.
Byte arrays are 20 times faster to serialize, making them a better choice for increasing disk-store performance.
Configuring the Disk Store
Disk stores are configured on a per CacheManager basis. If one or more caches requires a disk store but none is configured, a default directory is used and a warning message is logged to encourage explicit configuration of the disk store path.
Configuring a disk store is optional. If all caches use only memory, then there is no need to configure a disk store. This simplifies configuration, and uses fewer threads. This also makes it unnecessary to configure multiple disk store paths when multiple CacheManagers are being used.
Two disk store options are available:
- Temporary store (localTempSwap)
- Persistent store (localRestartable)
localTempSwap
The localTempSwap persistence strategy allows the memory store to overflow to disk when it becomes full. This option makes the disk a temporary store because overflow data does not survive restarts or failures. When the node is restarted, any existing data on disk is cleared because it is not designed to be reloaded.
If the disk store path is not specified, a default path is used, and the default will be auto-resolved in the case of a conflict with another CacheManager.
The localTempSwap disk store creates a data file for each cache on startup called “<cache_name>.data".
localRestartable
This option implements a restartable store for all in-memory data. After any restart, the data set is automatically reloaded from disk to the in-memory stores.
The path to the directory where any required disk files will be created is configured with the <diskStore> sub-element of the Ehcache configuration. In order to use the restartable store, a unique and explicitly specified path is required.
The diskStore Configuration Element
Files are created in the directory specified by the <diskStore> configuration element. The <diskStore> element has one attribute called path.
<diskStore path="/path/to/store/data"/>
Legal values for the path attribute are legal file system paths. For example, for Unix:
/home/application/cache
The following system properties are also legal, in which case they are translated:
- user.home - User's home directory
- user.dir - User's current working directory
- java.io.tmpdir - Default temp file path
- ehcache.disk.store.dir - A system property you would normally specify on the command line—for example, java -Dehcache.disk.store.dir=/u01/myapp/diskdir.
Subdirectories can be specified below the system property, for example:
user.dir/one
To programmatically set a disk store path:
DiskStoreConfiguration diskStoreConfiguration = new DiskStoreConfiguration();
diskStoreConfiguration.setPath("/my/path/dir");
// Already created a configuration object ...
configuration.addDiskStore(diskStoreConfiguration);
CacheManager mgr = new CacheManager(configuration);
Note: A CacheManager's disk store path cannot be changed once it is set in configuration. If the disk store path is changed, the CacheManager must be recycled for the new path to take effect.
Disk Store Expiry and Eviction
Expired elements are eventually evicted to free up disk space. The element is also removed from the in-memory index of elements.
One thread per cache is used to remove expired elements. The optional attribute diskExpiryThreadIntervalSeconds sets the interval between runs of the expiry thread.
Important: Setting diskExpiryThreadIntervalSeconds to a low value can cause excessive disk-store locking and high CPU utilization. The default value is 120 seconds.
If a cache's disk store has a limited size, Elements will be evicted from the disk store when it exceeds this limit. The LFU algorithm is used for these evictions. It is not configurable or changeable.
Note: With the localTempSwap strategy, you can use maxEntriesLocalDisk or maxBytesLocalDisk at either the Cache or CacheManager level to control the size of the disk tier.
Turning off Disk Stores
To turn off disk store path creation, comment out the diskStore element in ehcache.xml.
Ehcache(2.9.x) - Configuration Guide, Configuring Storage Tiers的更多相关文章
- Ehcache(2.9.x) - Configuration Guide, Configuring Cache
About Ehcache Configuration Ehcache supports declarative configuration via an XML configuration file ...
- P6 EPPM Installation and Configuration Guide 16 R1 April 2016
P6 EPPM Installation and Configuration Guide 16 R1 April 2016 Contents About Installing and ...
- P6 Professional Installation and Configuration Guide (Microsoft SQL Server Database) 16 R1
P6 Professional Installation and Configuration Guide (Microsoft SQL Server Database) 16 R1 May ...
- Installation and Configuration Guide
Harbor can be installed by one of three approaches: Online installer: The installer downloads Harbor ...
- In-App Purchase Configuration Guide for iTunes Connect---(一)----Introduction
Introduction In-App Purchase is an Apple technology that allows your users to purchase content and s ...
- Mater Nginx(2) - A Configuration Guide
The basic configuration format Nginx global configuration parameters Using include files The HTTP se ...
- Openstack: Single node Installation and External Network Accessing Configuration Guide
Summary of installation Step 0: Prerequisites Step 1: Create Openstack hostsystem Step 2: Config Ope ...
- Ehcache(2.9.x) - API Developer Guide, Key Classes and Methods
About the Key Classes Ehcache consists of a CacheManager, which manages logical data sets represente ...
- Table of Contents - Ehcache
Ehcache 2.9.x API Developer Guide Key Classes and Methods Basic Caching Cache Usage Patterns Searchi ...
随机推荐
- Random的nextInt用法
因为想当然的认为Random类中nextInt()(注:不带参数),会产生伪随机的正整数,采用如下的方式生成0~99之间的随机数: Random random = new Random(); rand ...
- ID生成器详解
概述 ID 生成器也叫发号器,它的主要目的就是"为一个分布式系统的数据object产生一个唯一的标识",但其实在一个真实的系统里可能也可以承担更多的作用.概括起来主要有以下几点: ...
- CUDA从入门到精通
http://blog.csdn.net/augusdi/article/details/12833235 CUDA从入门到精通(零):写在前面 在老板的要求下.本博主从2012年上高性能计算课程開始 ...
- 修改 SVN 账户密码的方法
记是记不住 的,即便是每天都在用的东西,也有貌似熟悉其实很陌生的时候,或者说根本就是不熟悉.于是需要拿出来经常翻翻,比如我们的SVN账户配置,很简单的一个 case,你可能是svn使用高手,但不一定记 ...
- hdu 5427 A problem of sorting 水题
A problem of sorting Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contest ...
- GLSL实现Ambient Occlusion 【转】
http://blog.csdn.net/a3070173/archive/2008/11/04/3221181.aspx 相信使用OpenGl或DirectX3D的朋友都知道到固定功能管线在光照处理 ...
- GoldenGate配置(一)之单向复制配置
GoldenGate配置(一)之单向复制配置 环境: Item Source System Target System Platform Red Hat Enterprise Linux Server ...
- iOS开发——高级UI&带你玩转UITableView
带你玩装UITableView 在实际iOS开发中UITableView是使用最多,也是最重要的一个控件,如果你不会用它,那别说什么大神了,菜鸟都不如. 其实关于UItableView事非常简单的,实 ...
- MySQL · 特性分析 · innodb 锁分裂继承与迁移
http://mysql.taobao.org/monthly/2016/06/01/ innodb行锁简介 行锁类型 LOCK_S:共享锁 LOCK_X: 排他锁 GAP类型 LOCK_GAP:只锁 ...
- MYSQL SQL 审核工具 (inception安装步骤)
http://blog.csdn.net/wulantian/article/category/5825391