HDU-4704 Sum 大数幂取模
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4704
题意:求a^n%m的结果,其中n为大数。
S(1)+S(2)+...+S(N)等于2^(n-1),第一次多校都出过吧。然后就是一个裸的大数幂了。。
关于大数的A^B mod C推荐看AC神的两篇文章<如何计算A^B mod C>,<计算a^(n!) mod c>...
当然,这个还以一个更简单的方法,由费马小定理:a^(p-1)=1(mod p),那么a^n=1(mod p)可以转化为:2^(n%(1e9+7-1)) % 1e9+7...
//STATUS:C++_AC_15MS_1360KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
//#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e15;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End #define nnum 1000005
#define nmax 31625
int flag[nmax], prime[nmax];
int plen;
void mkprime() {
int i, j;
memset(flag, -, sizeof(flag));
for (i = , plen = ; i < nmax; i++) {
if (flag[i]) {
prime[plen++] = i;
}
for (j = ; (j < plen) && (i * prime[j] < nmax); j++) {
flag[i * prime[j]] = ;
if (i % prime[j] == ) {
break;
}
}
}
}
int getPhi(int n) {
int i, te, phi;
te = (int) sqrt(n * 1.0);
for (i = , phi = n; (i < plen) && (prime[i] <= te); i++) {
if (n % prime[i] == ) {
phi = phi / prime[i] * (prime[i] - );
while (n % prime[i] == ) {
n /= prime[i];
}
}
}
if (n > ) {
phi = phi / n * (n - );
}
return phi;
}
int cmpCphi(int p, char *ch) {
int i, len;
LL res;
len = strlen(ch);
for (i = , res = ; i < len; i++) {
res = (res * + (ch[i] - ''));
if (res > p) {
return ;
}
}
return ;
}
int getCP(int p, char *ch) {
int i, len;
LL res;
len = strlen(ch);
for (i = , res = ; i < len; i++) {
res = (res * + (ch[i] - '')) % p;
}
return (int) res;
}
int modular_exp(int a, int b, int c) {
LL res, temp;
res = % c, temp = a % c;
while (b) {
if (b & ) {
res = res * temp % c;
}
temp = temp * temp % c;
b >>= ;
}
return (int) res;
} int solve(int a, int c, char *ch) {
int phi, res, b;
phi = getPhi(c);
if (cmpCphi(phi, ch)) {
b = getCP(phi, ch) + phi;
} else {
b = atoi(ch);
}
res = modular_exp(a, b, c);
return res;
} void getch(char ch[])
{
int i,j,num,len=strlen(ch);
ch[len-]--;
if(ch[len-]>='')return;
ch[len-]='';
for(i=len-;i>=;i--){
num=ch[i]-;
if(num>=''){
ch[i]=num;
if(i== && ch[i]=='')break;
return;
}
ch[i]='';
}
for(i=;i<=len;i++){
ch[i]=ch[i+];
}
} int main() {
// freopen("in.txt", "r", stdin);
int a, c;
int ans;
char ch[nnum];
mkprime();
while (~scanf("%s",ch)) {
getch(ch); a=,c=MOD;
ans=solve(a % c, c, ch);
printf("%d\n",ans);
}
return ;
}
HDU-4704 Sum 大数幂取模的更多相关文章
- EOJ3134. 短信激活码(大数幂取模)
题面 输入只有5位,所以转化为long long类型用快速幂取模 前面补0的写法printf("%05lld\n",ans);如果ans不足5位会在前面补0 #include< ...
- UVa 11582 Colossal Fibonacci Numbers! 【大数幂取模】
题目链接:Uva 11582 [vjudge] watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fil ...
- HDU - 4704 sum 大数取余+欧拉降幂
Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submi ...
- HDU 4704 Sum 超大数幂取模
很容易得出答案就是2^(n-1) 但是N暴大,所以不可以直接用幂取模,因为除法操作至少O(len)了,总时间会达到O(len*log(N)) 显然爆的一塌糊涂 套用FZU1759的模板+顺手写一个大数 ...
- HDU 1061 Rightmost Digit --- 快速幂取模
HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...
- hdu 1097 A hard puzzle 快速幂取模
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1097 分析:简单题,快速幂取模, 由于只要求输出最后一位,所以开始就可以直接mod10. /*A ha ...
- hdu 4506 小明系列故事——师兄帮帮忙【幂取模乱搞】
链接: http://acm.hdu.edu.cn/showproblem.php?pid=4506 http://acm.hust.edu.cn/vjudge/contest/view.action ...
- HDU 1061.Rightmost Digit-规律题 or 快速幂取模
Rightmost Digit Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- 题解报告:hdu 1061 Rightmost Digit(快速幂取模)
Problem Description Given a positive integer N, you should output the most right digit of N^N. Input ...
随机推荐
- codeforces #309 div1 D
求最小值最大显然是要二分 二分之后转换成了判定性问题 我们考虑哪些点一定不能选 显然是将所有可选点选中之后依然不满足条件的点不能选 那么我们不妨维护一个堆,每次取出堆顶看看是否满足条件 不满足条件就p ...
- [itint5]环形最大连续子段和
http://www.itint5.com/oj/#9 一开始有了个n*n的算法,就是把原来的数组*2,由环形的展开成数组.然后调用n次最大子段和的方法.超时. 后来看到个O(n)的算法,就是如果不跨 ...
- 解决浮层弹出如何加上datepicker,并且浮动在上面
最近在做一个弹出层上弹出的对话框中能弹出一个截止时间的选择框,这个选择框使用datepicker来做. 效果大致是这样的: 但是在做的时候,遇到一个问题,datepicker在弹出层的时候,时间选择框 ...
- Linux如何在虚拟机中挂载iso yum源
首先,将作为源的iso的挂载到系统上. 代码如下: mount -o loop /dev/cdrom /mnt/iso/ 或者 mount -o loop /xxx/xxx.iso /mnt/iso/ ...
- Autodesk 2015全套密钥
Below is a list for collecting all the Autodesk 2015 Product Keys: [*]AutoCAD 2015 001G1 [ ...
- RedMine项目管理系统邮件推送设置(Windows环境)
RedMine项目管理系统有邮箱推送功能,当Bug,安全漏洞等内容被修改.解决.评论的时候,系统会通过邮件 及时的通知你的团队和客户.邮件通知的环节.形式.时间.接受人均可定制,功能十分实用. 下面是 ...
- Android安全问题 程序锁
导读:本文介绍如何实现对应用加锁的功能,无须root权限 某些人有时候会有这样一种需求,小A下载了个软件,只是软件中的美女过于诱惑与暴露,所以他不想让别人知道这是个什么软件,起码不想让别人打开浏 览. ...
- Django处理文件上传File Uploads
HttpRequest.FILES 表单上传的文件对象存储在类字典对象request.FILES中,表单格式需为multipart/form-data <form enctype="m ...
- 关于C的一些理解
关于字符数组和字符指针 关于相互赋值问题一只有疑问,其实是自己搞不清指针和地址的关系.地址可以指向一块内存但是不一定存在于内存,比如字符数组名,数组名是地址,但是不实际存在于内存中,无法修改,而字符指 ...
- hdu2642Fliping game
http://acm.hdu.edu.cn/showproblem.php?pid=4642 这题..刚一看以为是什么高深的博弈 后来看过的人挺多 想是不是有什么规律 结果理解错题意了 以为随便圈一矩 ...