Coin partitions

Let p(n) represent the number of different ways in which n coins can be separated into piles. For example, five coins can separated into piles in exactly seven different ways, so p(5)=7.

OOOOO
OOOO O
OOO OO
OOO O O
OO OO O
OO O O O
O O O O O

Find the least value of n for which p(n) is divisible by one million.


硬币分拆

记p(n)是将n枚硬币分拆成堆的不同方式数。例如,五枚硬币有7种分拆成堆的不同方式,因此p(5)=7。

OOOOO
OOOO O
OOO OO
OOO O O
OO OO O
OO O O O
O O O O O

找出使p(n)能被一百万整除的最小n值。

思路:

求数的拆分有多少种

再判断是否能被一百万整除

参考资料:wiki ,PartitionFunctionP

法一:

根据这个等式:

高能预警:

1.  这里是两部分的和

2.当第一个不满足条件,即:n<k(3k-1)/2 时候,第二个一定不成立

3.第一个满足条件,第二个可能不满足条件,这里说的条件都是数组下标不能越界

4.满足条件的都要计算,只有当第一个不满足条件的时候才本次循环

5.前面的(-1)^(k+1),要乘进去,展开计算,就是计算符合条件的数组

关键程序:

for(k=1;k<=n;k++){
gk1 = k*(3*k-1)/2;
gk2 = gk1+k;
if(gk1>n) break;
plist.set(n,plist.get(n)+flag*plist.get(n-gk1));
if(gk2<=n){
plist.set(n,plist.get(n)+flag*plist.get(n-gk2));
}
plist.set(n,plist.get(n)%limit);
flag*=-1;
}

这里由于我只是在上面看到的求解表达式,造成我搞了好久都没有搞出来,没文化正可怕

法二:

看到这里还没有出问题

看到这里,直接根据上面的表达式求解了,然而这里的k不是从1-n,这里我又理解错了,以为拿来用就好了

上面的方法不行,下面的方法也不行,真是浪费了好多时间的

下面程序中有一个求k的过程,这里才是真谛啊!!!

关键程序:

while(gk<=n){
flag = (i%4>1)?-1:1;
plist.set(n,plist.get(n)+flag*plist.get(n-gk));
plist.set(n,plist.get(n)%limit);
i++;
int k= (i%2==0)?i/2+1:-(i/2+1);
gk = k*(3*k-1)/2;
}

Java程序:

package Level3;

import java.util.ArrayList;

public class PE078{

    void run(){
int limit = 1000000;
partitions2(limit);
}
void partitions2(int limit){
ArrayList<Integer> plist = new ArrayList<Integer>();
plist.add(1);
int n = 1;
while(true){
int gk1 =1;
int gk2 =2;
int k=1;
plist.add(0);// 初始第n
int flag = 1;
for(k=1;k<=n;k++){
gk1 = k*(3*k-1)/2;
gk2 = gk1+k;
if(gk1>n) break;
plist.set(n,plist.get(n)+flag*plist.get(n-gk1));
if(gk2<=n){
plist.set(n,plist.get(n)+flag*plist.get(n-gk2));
}
plist.set(n,plist.get(n)%limit);
flag*=-1;
}
if(plist.get(n)==0)
break;
n++;
}
System.out.println(n);
}
// 55374
// running time=0s784ms
void partitions1(int limit){
ArrayList<Integer> plist = new ArrayList<Integer>();
plist.add(1);
int n = 1;
int flag;
while(true){
int gk = 1;
int i = 0;
plist.add(0);
while(gk<=n){
flag = (i%4>1)?-1:1;
plist.set(n,plist.get(n)+flag*plist.get(n-gk));
plist.set(n,plist.get(n)%limit);
i++;
int k= (i%2==0)?i/2+1:-(i/2+1);
gk = k*(3*k-1)/2;
} if(plist.get(n)==0)
break;
n++;
}
System.out.println(n);
}
// 55374
// running time=1s155ms public static void main(String[] args){
long t0 = System.currentTimeMillis();
new PE078().run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms"); }
}

法三:

又给出了求k的一种方式

关键程序:

while True:
gk = k * (3 * k - 1) // 2
i = n - gk
if i < 0:
break
pt += (-1) ** (k * k + 1) * p[i]
k = -1 * k if k > 0 else 1 - k
p.append(pt)

python程序:

import time ;

def partitions(limit):
p = [1, 1, 2]
n = 2
while True:
n += 1
pt = 0
i = 0
k = 1
while True:
gk = k * (3 * k - 1) // 2
i = n - gk
if i < 0:
break
pt += (-1) ** (k * k + 1) * p[i]
k = -1 * k if k > 0 else 1 - k
p.append(pt)
if pt % limit == 0:
print "n =", n, "\n"+"partition =", pt
break if __name__=='__main__':
t0 = time.time()
limit = 1000000
partitions(limit)
t1 = time.time()
print "running time=",(t1-t0),"s" # n = 55374
# running time= 21.3049998283 s

说明:只有第一种方法是我自己写的,其他是在论坛看到的,自己整理的

Project Euler 78:Coin partitions的更多相关文章

  1. Python练习题 039:Project Euler 011:网格中4个数字的最大乘积

    本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...

  2. [project euler] program 4

    上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...

  3. Python练习题 029:Project Euler 001:3和5的倍数

    开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...

  4. Project Euler 9

    题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个 ...

  5. Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.

    In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentago ...

  6. project euler 169

    project euler 169 题目链接:https://projecteuler.net/problem=169 参考题解:http://tieba.baidu.com/p/2738022069 ...

  7. 【Project Euler 8】Largest product in a series

    题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × ...

  8. Project Euler 第一题效率分析

    Project Euler: 欧拉计划是一系列挑战数学或者计算机编程问题,解决这些问题需要的不仅仅是数学功底. 启动这一项目的目的在于,为乐于探索的人提供一个钻研其他领域并且学习新知识的平台,将这一平 ...

  9. Python练习题 049:Project Euler 022:姓名分值

    本题来自 Project Euler 第22题:https://projecteuler.net/problem=22 ''' Project Euler: Problem 22: Names sco ...

随机推荐

  1. CSS3实现半像素边框

    一.思路 普通的1px黑色实线边框: border: 1px solid #000; 半像素边框当然不是简单地把1px改为0.5px(没测试过,可能会被解析成1或者0),border-width的值只 ...

  2. jQuery滚动监听插件Waypoints

    页面内滚动操作的导航插件Waypoints.它可以让你方便的处理页面滚动事件,你可以比较自由的在自己的UI中使用这个插件控制页面滚动事件. Waypoints根据用户滚动的位置来帮助开发者构建相关的设 ...

  3. WCF 服务的ABC之地址(五)

    地址 Address 在WCF中,每个服务都有一个唯一的地址(Address). 地址包含两个重要的元素:服务位置及传输协议. 服务位置包含目标机器名.站点.通信端口.管道(或队列),以及一个可选的特 ...

  4. mongodb持久化

    先上一张图(根据此处重画),看完下面的内容应该可以理解. mongodb使用内存映射的方式来访问和修改数据库文件,内存由操作系统来管理.开启journal的情况,数据文件映射到内存2个view:pri ...

  5. mongodb的常用操作(二)

    继续mongodb的学习: 9.mongodb条件查询 假设有user集合,里面结构如下:{ "_id" : ObjectId("52ab35d281181f853264 ...

  6. GridView中的荧光棒效果

    使用 ASP.NET中的GridView控件的时候会遇到这个效果,当时觉得很神奇,其实就是两句代码的事儿,可是时间长了,有点儿忘了,今天练习一下, 顺便把删除的时候弹出js中的confirm对话框也写 ...

  7. PySide 简易教程<三>-------动手写起来

    到目前为止,已经接触的Pyside的界面元素有如下几个:QWidget.QPushButton.QLabel.本次再介绍两个tooltip和messagebox.tooltip是一个鼠标悬浮提示信息, ...

  8. SVM入门

    前言: 又有很长的一段时间没有更新博客了,距离上次更新已经有两个月的时间了.其中一个很大的原因是,不知道写什么好-_-,最近一段时间看了看关于SVM(Support Vector Machine)的文 ...

  9. 通过Linux命令过滤出binlog中完整的SQL语句

    DB:5.6.16CentOS:CentOS release 6.3 (Final) 当insert语句通过空格跨行输入的时候,如何提取完整的insert语句! 创建一个空表:mysql> cr ...

  10. boost muti-thread

    背景 •       今天互联网应用服务程序普遍使用多线程来提高与多客户链接时的效率:为了达到最大的吞吐量,事务服务器在单独的线程上运行服务程序: GUI应用程序将那些费时,复杂的处理以线程的形式单独 ...