时间限制
200 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

Indeed there are many different tourist routes from our city to Rome. You are supposed to find your clients the route with the least cost while gaining the most happiness.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2<=N<=200), the number of cities, and K, the total number of routes between pairs of cities; followed by the name of the starting city. The next N-1 lines each gives the name of a city and an integer that represents the happiness one can gain from that city, except the starting city. Then K lines follow, each describes a route between two cities in the format "City1 City2 Cost". Here the name of a city is a string of 3 capital English letters, and the destination is always ROM which represents Rome.

Output Specification:

For each test case, we are supposed to find the route with the least cost. If such a route is not unique, the one with the maximum happiness will be recommended. If such a route is still not unique, then we output the one with the maximum average happiness -- it is guaranteed by the judge that such a solution exists and is unique.

Hence in the first line of output, you must print 4 numbers: the number of different routes with the least cost, the cost, the happiness, and the average happiness (take the integer part only) of the recommended route. Then in the next line, you are supposed to print the route in the format "City1->City2->...->ROM".

Sample Input:

6 7 HZH
ROM 100
PKN 40
GDN 55
PRS 95
BLN 80
ROM GDN 1
BLN ROM 1
HZH PKN 1
PRS ROM 2
BLN HZH 2
PKN GDN 1
HZH PRS 1

Sample Output:

3 3 195 97
HZH->PRS->ROM
 #include<stdio.h>
#include<map>
#include<string>
#include<string.h>
#include<stack>
using namespace std;
#define MAX 210
int INF = ;
int HappyVal[];
int visit[MAX];
int Grap[MAX][MAX];
int d[MAX];
int h[MAX];
int num[MAX];
int pre[MAX];
int Count[MAX]; void Dijkstra(int Begin,int NodeNum)
{
d[Begin] = ;
h[Begin] = HappyVal[Begin];
num[Begin] = ;
Count[Begin] = ;
for(int i = ;i < NodeNum ;i++)
{
int index = -;
int MIN = INF;
for(int j = ;j <NodeNum ;j++)
{
if(!visit[j] && d[j] < MIN)
{
index = j;
MIN = d[j];
}
} if(index == -) return ;
visit[index] = true;
for(int v = ;v <NodeNum ;v++)
{
if(!visit[v] && Grap[index][v]!=INF)
{
if(d[index]+Grap[index][v]<d[v])
{
d[v] = d[index]+Grap[index][v];
num[v] = num[index];
h[v] = h[index] + HappyVal[v];
pre[v] = index;
Count[v] = Count[index] +;
}
else if(d[index]+Grap[index][v]==d[v])
{
num[v] = num[v] + num[index]; if(h[v] < h[index] + HappyVal[v])
{
h[v] = h[index] + HappyVal[v];
Count[v] = Count[index] +;
pre[v] = index;
}
else if( h[v] == h[index] + HappyVal[v] && (double)(h[index] + HappyVal[v])/(Count[index]+) > (double)h[v]/Count[v])
{
Count[v] = Count[index] +;
pre[v] = index;
}
}
}
}
} } int main()
{
int i,j,N,K,happy,ROM;
char Begin[],tem[];
scanf("%d%d%s",&N,&K,Begin);
map<string,int> mm;
map<int,string> mm2;
mm[Begin] = ;
mm2[] = Begin ;
HappyVal[mm[Begin]] = ;
for(i = ; i < N ;i++)
{
scanf("%s%d",tem,&happy);
if(strcmp("ROM",tem)==) ROM = i;
mm[tem] = i;
mm2[i] = tem;
HappyVal[i] = happy;
} char x[],y[]; for(i = ; i < N ;i++)
{
for(j = ; j < N ;j++)
{
Grap[i][j] = INF;
}
d[i] = h[i] = INF;
pre[i] = -;
Count[i] = ;
} for(i = ; i < K ;i++)
{
scanf("%s%s",x,y);
scanf("%d",&Grap[mm[x]][mm[y]]);
Grap[mm[y]][mm[x]] = Grap[mm[x]][mm[y]];
} Dijkstra( mm[Begin] , N); printf("%d %d %d %d\n",num[mm["ROM"]],d[mm["ROM"]],h[mm["ROM"]],h[mm["ROM"]]/Count[mm["ROM"]]); stack<int> ss;
i= mm["ROM"];
while(i != -)
{
ss.push(i);
i = pre[i];
}
int fir = ;
while(!ss.empty())
{
if(fir == )
{
fir = ;
printf("%s",mm2[ss.top()].c_str());
}
else printf("->%s",mm2[ss.top()].c_str());
ss.pop();
} printf("\n"); return ;
}

1087. All Roads Lead to Rome (30)的更多相关文章

  1. [图的遍历&多标准] 1087. All Roads Lead to Rome (30)

    1087. All Roads Lead to Rome (30) Indeed there are many different tourist routes from our city to Ro ...

  2. 1087 All Roads Lead to Rome (30)(30 分)

    Indeed there are many different tourist routes from our city to Rome. You are supposed to find your ...

  3. PAT甲级练习 1087 All Roads Lead to Rome (30分) 字符串hash + dijkstra

    题目分析: 这题我在写的时候在PTA提交能过但是在牛客网就WA了一个点,先写一下思路留个坑 这题的简单来说就是需要找一条最短路->最开心->点最少(平均幸福指数自然就高了),由于本题给出的 ...

  4. PAT (Advanced Level) 1087. All Roads Lead to Rome (30)

    暴力DFS. #include<cstdio> #include<cstring> #include<cmath> #include<vector> # ...

  5. 【PAT甲级】1087 All Roads Lead to Rome (30 分)(dijkstra+dfs或dijkstra+记录路径)

    题意: 输入两个正整数N和K(2<=N<=200),代表城市的数量和道路的数量.接着输入起点城市的名称(所有城市的名字均用三个大写字母表示),接着输入N-1行每行包括一个城市的名字和到达该 ...

  6. PAT 1087 All Roads Lead to Rome[图论][迪杰斯特拉+dfs]

    1087 All Roads Lead to Rome (30)(30 分) Indeed there are many different tourist routes from our city ...

  7. pat1087. All Roads Lead to Rome (30)

    1087. All Roads Lead to Rome (30) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...

  8. PAT 1087 All Roads Lead to Rome

    PAT 1087 All Roads Lead to Rome 题目: Indeed there are many different tourist routes from our city to ...

  9. PAT甲级1087. All Roads Lead to Rome

    PAT甲级1087. All Roads Lead to Rome 题意: 确实有从我们这个城市到罗马的不同的旅游线路.您应该以最低的成本找到您的客户的路线,同时获得最大的幸福. 输入规格: 每个输入 ...

随机推荐

  1. Customer reviews on Lexia3 V48 diagnostic tool in EOBD2.FR

    Robert said: Ok, so I bought a Lexia3 interface from EOBD2.FR in 2010. I have had no issues over the ...

  2. mongoDB操作命令及mongoDB的helper

    此项目已开源,开源地址是: http://mongodbhelper-csharp.googlecode.com/svn/trunk/ mongodb的helper using System; usi ...

  3. CMD相关命令初探

    今天想起来对个人写得一个自动启动绿色版MySQL服务器端的批处理文件,进行外观美化,使自己在启动时,能得心旷神怡一点.在网上学习了一点CMD批处理的知识.在此保留,以待后查. @      @:不显示 ...

  4. [改善Java代码] 推荐使用序列化实现对象的拷贝

    建议44: 推荐使用序列化实现对象的拷贝 上一个建议说了对象的浅拷贝问题,实现Cloneable接口就具备了拷贝能力,那我们来思考这样一个问题:如果一个项目中有大量的对象是通过拷贝生成的,那我们该如何 ...

  5. [改善Java代码]推荐使用String直接量赋值

    建议52:推荐使用String直接量赋值 一.建议 String对象的生成方式有两种: 1.通过new关键字生成,String str3 = new String(“中国”); 2.直接声明,如:St ...

  6. Java线程池--ThreadPoolExecutor

    一.线程池的处理流程 向线程池提交一个任务后,它的主要处理流程如下图所示: 一个线程从被提交(submit)到执行共经历以下流程: 线程池判断核心线程池里的线程是否都在执行任务,如果不是,则创建一个新 ...

  7. 在Ubuntu中USB连接手机调试

    1.打开手机USB调试功能 显示“开发者选项”(开发者选项默认隐藏,一般需要进入到“设置”-->“关于手机”连续点击七次,可将“开发者选项显示出来”) 将“开发者选项”设置为“开启”状态 打开U ...

  8. jQuery之手风琴图片

    <!DOCTYPE HTML> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  9. centos6.5下磁盘创建交换分区

    1.创建磁盘交换分区 2.创建文件交换分区

  10. 个人实验记录之EIGRP基本配置

    一.EIGRP的基本配置 1(1).进入接口配置IP R1(config)#inter s1/0 R1(config-if)#ip address 200.1.1.1 255.255.255.0 R1 ...