题意:多个骑士要开会,3人及以上才能凑一桌,其中部分人已经互相讨厌,肯定不坐在同一桌的相邻位置,而且一桌只能奇数个人才能开台。给出多个人的互相讨厌图,要求多少人开不成会(注:会议不要求同时进行,一个人开多个会不冲突)?

分析:

  给的是互相讨厌的图,那么转成互相喜欢的吧,扫一遍,如果不互相讨厌就认为互相喜欢,矩阵转邻接表先。

  有边相连的两个点代表能坐在一块。那么找出一个圈圈出来,在该圈内的点有奇数个人的话肯定能凑成1桌。圈圈?那就是简单环了,跟点双连通分量的定义好像一样:每个点都能同时处于1个及以上的简单环中。这么说,只要有环,他们就能凑一桌了(每个环开一桌,同1人参加多桌并不冲突)。

  但是奇数的问题怎么解决?如果是一个点双连通分量是个偶图(即二分图),那么肯定只有偶数环。想想,图都双连通了,那么必有简单环,1个简单环中如果是奇数个了,着色法染色时必定有冲突。那么就用偶图判定来解决这个问题。

实现:

  (1)互相讨厌图转互相喜欢图。

  (2)求点双连通分量,并把同个点双连通分量内的点都给归类出来。(注意可能图不连通)

  (3)黑白着色判定偶图,非偶图的留下,偶图忽略。3个人一下的点双连通分量也忽略。

  (4)只要1个点能够处于任一非偶图中,标记其为“可以开会”。

  (5)统计哪些人开不了会。(肯定是那些3人以下的,偶数个人还想坐一块的)

 //#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <stack>
#include <vector>
#define LL long long
#define pii pair<int,int>
using namespace std;
const int N=+;
const int INF=0x7f7f7f7f;
int n, m, bcc_cnt, dfn_clock; //点双连通分量的个数
int g[N][N], dfn[N], low[N], bcc_no[N], col[N], flag[N]; stack<pair<int,int> > stac;
vector<int> bcc[N], vect[N]; void DFS(int x,int far)
{
dfn[x]=low[x]=++dfn_clock;
for(int i=; i<vect[x].size(); i++)
{
int t=vect[x][i];
if(!dfn[t])
{
stac.push(make_pair(x,t));
DFS(t,x);
low[x]=min(low[x],low[t]);
if(low[t]>=dfn[x])
{
bcc[++bcc_cnt].clear();
while()
{
int a=stac.top().first;
int b=stac.top().second;
stac.pop();
if(bcc_no[a]!=bcc_cnt)
{
bcc_no[a]=bcc_cnt;
bcc[bcc_cnt].push_back(a);
}
if(bcc_no[b]!=bcc_cnt)
{
bcc_no[b]=bcc_cnt;
bcc[bcc_cnt].push_back(b);
}
if(a==x && b==t) break;
}
}
}
else if(dfn[t]<dfn[x] && t!=far) //特别注意,“dfn[t]<dfn[x]”这句是必须的,特别是在求点双连通分量时。否则可能乱。
{
stac.push(make_pair(x,t));
low[x]=min(low[x],dfn[t]);
}
}
} void find_bcc() //找出点双连通分量,放在bcc中
{
bcc_cnt= dfn_clock= ;
memset(low, ,sizeof(low));
memset(bcc_no,,sizeof(bcc_no));
memset(dfn, ,sizeof(dfn));
for(int i=; i<=n; i++)
if(!dfn[i]) DFS(i,-);
} int color(int num) //判断是否偶图,偶图不含奇圈
{
col[bcc[num][]]=;
deque<int> que;que.push_back(bcc[num][]);
while(!que.empty()) //广搜着色
{
int x=que.front();que.pop_front();
for(int i=; i<bcc[num].size(); i++)
{
int t=bcc[num][i];
if(x!=t&&!g[x][t]) //只要有边
{
if(col[t]==col[x]) return false; //颜色已经相同,非偶图
if(!col[t]) //无染过才进
{
col[t]=-col[x];
que.push_back(t);
} }
}
}
return true;
} int color_it()
{
memset(flag, , sizeof(flag));
for(int i=; i<=bcc_cnt; i++)
{
memset(col, , sizeof(col)); //每次都要置0,因为可能有点属于两个双连通分量
if(bcc[i].size()<) continue; //不够人数开会
if(color(i)==false) //不是偶图
for(int j=; j<bcc[i].size(); j++) //这些人都可以开会,mark一下
flag[bcc[i][j]]=;
} int cnt=;
for(int i=; i<=n; i++) //统计哪些人不能开会
if(!flag[i]) cnt++;
return cnt;
} int main()
{
freopen("input.txt", "r", stdin);
int a, b;
while(scanf("%d%d",&n,&m), n+m)
{
for(int i=; i<=n; i++) vect[i].clear();
memset(g,,sizeof(g)); for(int i=; i<m; i++)
{
scanf("%d%d",&a,&b);
g[a][b]=g[b][a]=;
}
for(int i=; i<=n; i++) //转邻接表
for(int j=i+; j<=n; j++)
if(!g[i][j]) vect[i].push_back(j),vect[j].push_back(i); find_bcc();
printf("%d\n",color_it()); } return ;
}

AC代码

POJ 2942 Knights of the Round Table (点双连通分量)的更多相关文章

  1. poj 2942 Knights of the Round Table(点双连通分量+二分图判定)

    题目链接:http://poj.org/problem?id=2942 题意:n个骑士要举行圆桌会议,但是有些骑士相互仇视,必须满足以下两个条件才能举行: (1)任何两个互相仇视的骑士不能相邻,每个骑 ...

  2. POJ 2942 Knights of the Round Table(双连通分量)

    http://poj.org/problem?id=2942 题意 :n个骑士举行圆桌会议,每次会议应至少3个骑士参加,且相互憎恨的骑士不能坐在圆桌旁的相邻位置.如果意见发生分歧,则需要举手表决,因此 ...

  3. 【POJ】2942 Knights of the Round Table(双连通分量)

    http://poj.org/problem?id=2942 各种逗.... 翻译白书上有:看了白书和网上的标程,学习了..orz. 双连通分量就是先找出割点,然后用个栈在找出割点前维护子树,最后如果 ...

  4. POJ 2942.Knights of the Round Table (双连通)

    简要题解: 意在判断哪些点在一个图的  奇环的双连通分量内. tarjan求出所有的点双连通分量,再用二分图染色判断每个双连通分量是否形成了奇环,记录哪些点出现在内奇环内 输出没有在奇环内的点的数目 ...

  5. POJ - 2942 Knights of the Round Table (点双联通分量+二分图判定)

    题意:有N个人要参加会议,围圈而坐,需要举手表决,所以每次会议都必须是奇数个人参加.有M对人互相讨厌,他们的座位不能相邻.问有多少人任意一场会议都不能出席. 分析:给出的M条关系是讨厌,将每个人视作点 ...

  6. POJ 2942 Knights of the Round Table 黑白着色+点双连通分量

    题目来源:POJ 2942 Knights of the Round Table 题意:统计多个个骑士不能參加随意一场会议 每场会议必须至少三个人 排成一个圈 而且相邻的人不能有矛盾 题目给出若干个条 ...

  7. poj 2942 Knights of the Round Table - Tarjan

    Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress ...

  8. POJ 2942 Knights of the Round Table

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 10911   Acce ...

  9. poj 2942 Knights of the Round Table 圆桌骑士(双连通分量模板题)

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 9169   Accep ...

  10. POJ 2942 Knights of the Round Table - from lanshui_Yang

    Description Being a knight is a very attractive career: searching for the Holy Grail, saving damsels ...

随机推荐

  1. 【WCF--初入江湖】08 并发与实例模式

    08 并发与实例模式 1. 实例上下文模式   一个服务代理:servicePoxy ChannelFactory<IService1> factoryservicel = new Cha ...

  2. <%@page include%>、<%@include%>、<jsp:include>三者之间的本质区别

    <%@page include%>.<%@include%>.<jsp:include>三者之间的本质区别 先从它的几个内置对象说起. application和se ...

  3. 【面试题012】打印1到最大的n位数

    [面试题012]打印1到最大的n位数  大数问题 字符串中的每一个字符都是‘0’到‘9’之间的某一个字符,用来表示数字中的一位,因为数字最大是n位的,因此我们需要一个长度为n+1的字符串,字符串的最后 ...

  4. 【设计模式六大原则3】依赖倒置原则(Dependence Inversion Principle)

      定义:高层模块不应该依赖低层模块,二者都应该依赖其抽象:抽象不应该依赖细节:细节应该依赖抽象. 问题由来:类A直接依赖类B,假如要将类A改为依赖类C,则必须通过修改类A的代码来达成.这种场景下,类 ...

  5. JavaScript Madness: Dynamic Script Loading

    Introduction I've developed some pretty seriously Javascript intensive sites, where the sheer quanti ...

  6. 求和问题总结(leetcode 2Sum, 3Sum, 4Sum, K Sum)

    转自  http://tech-wonderland.net/blog/summary-of-ksum-problems.html 前言: 做过leetcode的人都知道, 里面有2sum, 3sum ...

  7. java基础知识回顾之java Thread类学习(六)--java多线程同步函数用的锁

    1.验证同步函数使用的锁----普通方法使用的锁 思路:创建两个线程,同时操作同一个资源,还是用卖票的例子来验证.创建好两个线程t1,t2,t1线程走同步代码块操作tickets,t2,线程走同步函数 ...

  8. .NET framework 4.0安装失败怎么办

    开始——运行——输入cmd——回车——在打开的窗口中输入net stop WuAuServ   开始——运行——输入%windir%找到有个叫SoftwareDistribution的文件夹,把它重命 ...

  9. [转] 软件定义网络(SDN) 的应运而生

    原文见51CTO:http://network.51cto.com/art/201103/251425.htm 2012的故事 2012年的某天,你跟往常一样起床,打开电脑,却发现无法登录到邮箱.无法 ...

  10. cogs 自己出的题目 题解报告

    第一题很简单嘛,就是裸的动态树分治嘛 对于每一层的重心维护子树路径的信息和子树到上一层重心的点的信息 空间复杂度O(nlogn) 对于每一层我们按dis排序,之后记录军队数量的前缀和 查询的时候我们只 ...