在理想磁场环境下(没有不存在场不均匀性),对于一个没有梯度场的方块。





此时,RF pulse的两路正交信号(相位差为90°)对此方块进行激发,然后收取信号,我们可以得到由此方块产生的FID信号。





设此信号为\(S(t)\),则此信号由\(S_c(t)\)与\(S_s(t)\)组成,分别组成\(S(t)\)的实部与虚部。

\[\left\{
\begin{aligned}
S_c(t)=M_{xy}e^{-t/T_2}\cos({\omega}t)\\
S_s(t)=M_{xy}e^{-t/T_2}\sin({\omega}t)
\end{aligned}
\right.
\]

这是我们的接受线圈接收到的两组正交信号。

再利用欧拉公式

\[\left\{
\begin{aligned}
\cos({\omega}t)=\frac{e^{i{\omega}t}+e^{-{i{\omega}t}}}{2}\\
\sin({\omega}t)=\frac{e^{i{\omega}t}-e^{-{i{\omega}t}}}{2i}
\end{aligned}
\right.
\]

使

\[ S(t)=S_c(t)+iS_s(t)
\]

\[ S(t)=M_{xy}*e^{-t/T_2}*e^{-i{\omega}t}
\]

此时,我们忽略衰减项\(e^{-t/T_2}\),则

\[ S(t)=M_{xy}*e^{-i{\omega}t}
\]

这是我们对单个方块进行激发的结果,那么此时,引入梯度磁场进行空间定位。





根据拉莫尔进动(Larmor precession)

\[ \omega={\gamma}B
\]

Phase encoding gradient和frequency encoding gradient的出现会使得这个方块内部的每个位置的进动频率\(\omega\)发生变化。但需要注意Phase encoding gradient和frequency encoding gradient是不能够同时开启的(SE序列中)。然后,我们看自旋回波序列(SE)。



在接收信号前,分别开启了一段Phase encoding gradient和frequency encoding gradient。在接收信号的时候,frequency encoding gradient全程保持开启。

先进行公式推导,\(S(t)\)即为上文理想方块条件下推导得出的,我们将\(M_{xy}\)设定为\(\rho(x,y)\)表示方块中每个位置在加权设定后的信号强度,则

\[ S(t)=\iint{\rho(x,y)e^{-i\phi(x,y,t)}}dxdy
\]

其中

\[ \phi(x,y,t)={\gamma}\int_{0}^{t}{[G_x(t^{\prime})x+G_y(t)y]}dt^{\prime}
\]

设定\(G_x\)为frequency encoding gradient,\(G_y\)为Phase encoding gradient,和序列图中保持一致,\(0\)至\(t\)为开始采样至实时采样的时间,SE序列图中的\(t_1\)和\(t_2\)为其中的两个\(t\)(这是一个变上限积分)。

\[\left\{
\begin{aligned}
k_x=2\pi\int_{0}^{t}{G_x(t^{\prime})}dt^{\prime}\\
k_y=2\pi\int_{0}^{t}{G_y(t)}dt^{\prime}
\end{aligned}
\right.
\]

\[ S(t)=\iint{\rho(x,y)e^{-i2\pi[k_xx+k_yy]}}dxdy
\]

\[ S(k_x,k_y)=\iint{\rho(x,y)e^{-i2\pi[k_xx+k_yy]}}dxdy
\]

至此,在数学上说明了\(S(t)\)与\(\rho(x,y)\)互为傅里叶变换对。这时,我们将方块分割为一个3*3的方块进行进一步的说明。



其中的数值为该位置对应的\(\rho(x,y)\)数值。

以\(S_c(t)\)信号为例,其组成的是\(S(t)\)中的实部,在没有进行空间编码前



根据SE序列的波形,先是进行了Phase encoding gradient



Phase encoding gradient改变的也是\(\omega\),但作用了一段时间就停止了,相当于把纵向的各个单位以不同的\(\omega\)推了相同的时间,那么他们的相位\(\theta\)就发生了变化。并且,通过改变Phase encoding gradient的斜率,可以使得\(\theta\)的数值发生变化,对于一个3*3的方块,想要进行空间定位就要改变三次Phase encoding gradient斜率。

然后在收取数据的同时,进行frequency encoding gradient



frequency encoding gradient同样改变了\(\omega\),并且与收取信号同时进行,就此完成了区块的空间定位。通俗的来说,假设这些区块在一个环形的跑道进行赛跑,Phase encoding gradient就相当于在跑步开始之前,将同一个跑道上的每个跑者推到不同的起点上,frequency encoding gradient相当于使得不同跑道上的跑者有不同的跑步速度。

让我们回到公式

\[\left\{
\begin{aligned}
k_x=2\pi\int_{0}^{t}{G_x(t^{\prime})}dt^{\prime}\\
k_y=2\pi\int_{0}^{t}{G_y(t)}dt^{\prime}
\end{aligned}
\right.
\]

这里面的\(k_x\)与\(k_y\)就是位于K空间的\(xy\)坐标(注意\(t\)与\(t^{\prime}\)的区别)。\(G_y(t)\)就是Phase encoding gradient,在SE序列中每次都需要重新变化斜率,需要在y方向将区域分割成多少块,就需要变化多少次斜率,每次变化都需要经过一个\(TR\)。而\(G_x\)则保持不变,并且只需要增加采样点数就可以增加此方向的区块分割,不需要增加采样的时间。故我们使用SE序列进行图像重建的时候,最好将分块更多的方向对应frequency encoding gradient,因为每次Phase encoding gradient都需要消耗一个\(TR\)。这里我截取MRI,The Basics书中的一幅图说明这一点。



对于一个\(3*3\)的方块,哪边放在frequency encoding gradient都无所谓。但如果是一个\(128*256\)的方块,那么就需要将256的那条边放在frequency encoding gradient上,以减少重建时间。

参考:

[1]MRI From Picture to Proton

[2]MRI, The Basics

[3]MRI磁振影像學 盧家鋒

[4]MRI原理-信号 - lemon lelieven的文章 - 知乎 https://zhuanlan.zhihu.com/p/137255997

[5]【磁共振的K空间】 https://www.bilibili.com/video/BV1ch411e7Yc/?share_source=copy_web&vd_source=0e8c3fe50c67df43ceeb30f63e36eb0d

核磁共振成像学习笔记——从FID信号到K空间的更多相关文章

  1. APUE学习笔记——10.9 信号发送函数kill、 raise、alarm、pause

    转载注明出处:Windeal学习笔记 kil和raise kill()用来向进程或进程组发送信号 raise()用来向自身进程发送信号. #include <signal.h> int k ...

  2. APUE学习笔记——10.可靠信号与不可靠信号

    首先说明:现在大部分Unix系系统如Linux都已经实现可靠信号. 1~31信号与SIGRTMIN-SIGRTMAX之间并不是可靠信号与不可靠信号的区别,在大多数系统下他们都是可靠信号. 只不过: 1 ...

  3. C++学习笔记(1)——数据类型占空间大小

    boolean bool 1 byte   character char 1 byte May be signed or unsigned   wchar_t 1 byte     char16_t ...

  4. oracle 学习笔记(2)创建表空间及用户授权

    原文:http://www.cnblogs.com/smartvessel/archive/2009/07/06/1517690.html Oracle安装完后,其中有一个缺省的数据库,除了这个缺省的 ...

  5. Oracle学习笔记—数据库,实例,表空间,用户、表之间的关系

    之前一直使用的关系型数据库是Mysql,而新公司使用Oracle,所以最近从网上搜集了一些资料,整理到这里,如果有不对的地方,欢迎大家讨论. 基本概念: 数据库:Oracle 数据库是数据的物理存储. ...

  6. 主席树学习笔记(静态区间第k大)

    题目背景 这是个非常经典的主席树入门题——静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个整数构成的序列,将对于指定的闭区间查询其区间内的第K小值. 输入输出 ...

  7. AXI_LITE源码学习笔记

    AXI_LITE源码学习笔记 1. axi_awready信号的产生 准备接收写地址信号 // Implement axi_awready generation // axi_awready is a ...

  8. Linux学习笔记19——信号2

    上一节中讲到了sigprocmask函数,它的作用是检查或修改它的进程信号掩码,这一节我们主要学习捕捉与忽略信号的函数sigaction和等待信号函数. 一  sigaction函数的作用 定义在接收 ...

  9. DBus学习笔记

    摘要:DBus作为一个轻量级的IPC被越来越多的平台接受,在MeeGo中DBus也是主要的进程间通信方式,这个笔记将从基本概念开始记录笔者学习DBus的过程 [1] DBus学习笔记一:DBus学习的 ...

  10. DirectX Graphics Infrastructure(DXGI):最佳范例 学习笔记

    今天要学习的这篇文章写的算是比较早的了,大概在DX11时代就写好了,当时龙书11版看得很潦草,并没有注意这篇文章,现在看12,觉得是跳不过去的一篇文章,地址如下: https://msdn.micro ...

随机推荐

  1. 从 Hadoop 到云原生, 大数据平台如何做存算分离

    Hadoop 的诞生改变了企业对数据的存储.处理和分析的过程,加速了大数据的发展,受到广泛的应用,给整个行业带来了变革意义的改变:随着云计算时代的到来, 存算分离的架构受到青睐,企业开开始对 Hado ...

  2. SQL语句中过滤条件放在on和where子句中的区别和联系

    摘要: 介绍在多表关联SQL语句中,过滤条件放在on和where子句中的区别--inner join中没区别,外连接就不一样. 综述   蚂蚁金服的一道SQL面试题如下:SQL语句中,过滤条件放在on ...

  3. 视频结构化 AI 推理流程

    「视频结构化」是一种 AI 落地的工程化实现,目的是把 AI 模型推理流程能够一般化.它输入视频,输出结构化数据,将结果给到业务系统去形成某些行业的解决方案. 换个角度,如果你想用摄像头来实现某些智能 ...

  4. 使用 Loki 进行日志报警(二)

    转载自:https://mp.weixin.qq.com/s?__biz=MzU4MjQ0MTU4Ng==&mid=2247492374&idx=1&sn=d09f6db623 ...

  5. Solutions:应用程序性能监控/管理(APM)实践---python/flask

    本文部分内容转载自:https://blog.csdn.net/UbuntuTouch/article/details/102844900 官方文档:https://www.elastic.co/gu ...

  6. 官方使用logstash同步Mysql数据表到ES的摘抄

    官方文档地址:https://www.elastic.co/guide/en/logstash/current/plugins-inputs-jdbc.html#plugins-inputs-jdbc ...

  7. Css3中自适应布局单位vh、vw

    视口单位(Viewport units) 什么是视口? 在桌面端,视口指的是在桌面端,指的是浏览器的可视区域:而在移动端,它涉及3个视口:Layout Viewport(布局视口),Visual Vi ...

  8. 谣言检测()《Data Fusion Oriented Graph Convolution Network Model for Rumor Detection》

    论文信息 论文标题:Data Fusion Oriented Graph Convolution Network Model for Rumor Detection论文作者:Erxue Min, Yu ...

  9. [Android开发学iOS系列] iOS写UI的几种方式

    [Android开发学iOS系列] iOS写UI的几种方式 作为一个现代化的平台, iOS的发展也经历了好几个时代. 本文讲讲iOS写UI的几种主要方式和各自的特点. iOS写UI的方式 在iOS中写 ...

  10. C++ 队列!还是要从 STL 中的说起……

    1. 前言 队列和栈一样,都是受限的数据结构. 队列遵循先进先出的存储原则,类似于一根水管,水从一端进入,再从另一端出去.进入的一端称为队尾,出去的一端称为队头. 队列有 2 个常规操作: 入队:进入 ...