Luogu[YNOI2019]排序(DP,线段树)
要最优?就要一步到位,不能做“马后炮”,走“回头路”,因此将序列映射到一个假定最优序列,发现移动原序列等价于删除原序列元素,以便生成最大不下降子序列。可线段树维护。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++a)
#define nR(a,b,c) for(register int a = (b); a >= (c); --a)
#define Fill(a,b) memset(a, b, sizeof(a))
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
#define QWQ
#ifdef QWQ
#define D_e_Line printf("\n---------------\n")
#define D_e(x) cout << (#x) << " : " << x << "\n"
#define Pause() system("pause")
#define FileOpen() freopen("in.txt", "r", stdin)
#define FileSave() freopen("out.txt", "w", stdout)
#define TIME() fprintf(stderr, "\nTIME : %.3lfms\n", clock() * 1000.0 / CLOCKS_PER_SEC)
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#define FileSave() ;
#define TIME() ;
#endif
struct ios {
template<typename ATP> inline ios& operator >> (ATP &x) {
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <='9') x = x * 10 + (c ^ '0'), c = getchar();
x *= f;
return *this;
}
}io;
using namespace std;
template<typename ATP> inline ATP Max(ATP a, ATP b) {
return a > b ? a : b;
}
template<typename ATP> inline ATP Min(ATP a, ATP b) {
return a < b ? a : b;
}
template<typename ATP> inline ATP Abs(ATP a) {
return a < 0 ? -a : a;
}
const int N = 1e2 + 7;
int t[N << 2];
#define ls rt << 1
#define rs rt << 1 | 1
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
inline void Pushup(int &rt) {
t[rt] = Max(t[ls], t[rs]);
}
inline void Modify(int rt, int l, int r, int x, int w) {
if(l == r){
t[rt] = w;
return;
}
int mid = (l + r) >> 1;
if(x <= mid)
Modify(lson, x, w);
else
Modify(rson, x, w);
Pushup(rt);
}
inline int Query(int rt, int l, int r, int L, int R) {
if(L <= l && r <= R) return t[rt];
int mid = (l + r) >> 1, maxx = -1e9;
if(L <= mid) maxx = Max(maxx, Query(lson, L, R));
if(R > mid) maxx = Max(maxx, Query(rson, L, R));
return maxx;
}
int f[N], a[N], b[N];
int main() {
int Tasks;
io >> Tasks;
while(Tasks--){
int n, sum = 0;
io >> n;
R(i,1,n){
io >> a[i];
b[i] = a[i];
f[i] = 0;
sum += a[i];
}
sort(b + 1, b + n + 1);
int m = unique(b + 1, b+ n + 1) - b- 1;
R(i,1,n){
int x = lower_bound(b + 1, b + n + 1, a[i]) - b;
Modify(1, 1, m, x, Query(1, 1, m, 1, x) + a[i]);
// R(j,1,i - 1){
// if(a[i] >= a[j]){
// f[i] = Max(f[i], f[j]);
// }
// }
// f[i] += a[i];
}
// int delta = 0;
// R(i,1,n){
// delta = Max(delta, f[i]);
// }
//
printf("%d\n", sum - Query(1, 1, m, 1, m));
}
return 0;
}
Luogu[YNOI2019]排序(DP,线段树)的更多相关文章
- 2021.12.09 [HEOI2016/TJOI2016]排序(线段树+二分,把一个序列转换为01串)
2021.12.09 [HEOI2016/TJOI2016]排序(线段树+二分,把一个序列转换为01串) https://www.luogu.com.cn/problem/P2824 题意: 在 20 ...
- ZOJ 3349 Special Subsequence 简单DP + 线段树
同 HDU 2836 只不过改成了求最长子串. DP+线段树单点修改+区间查最值. #include <cstdio> #include <cstring> #include ...
- 【BZOJ4552】排序(线段树,二分答案)
[BZOJ4552]排序(线段树,二分答案) 题面 BZOJ 题解 好神的题啊 直接排序我们做不到 怎么维护? 考虑一下,如果我们随便假设一个答案 怎么检验它是否成立? 把这个数设成\(1\),其他的 ...
- hdu 3016 dp+线段树
Man Down Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- cf834D(dp+线段树区间最值,区间更新)
题目链接: http://codeforces.com/contest/834/problem/D 题意: 每个数字代表一种颜色, 一个区间的美丽度为其中颜色的种数, 给出一个有 n 个元素的数组, ...
- LUOGU P4088 [USACO18FEB]Slingshot(线段树)
传送门 解题思路 推了推式子发现是个二维数点,想了想似乎排序加线段树难写,就写了个树套树,结果写完看见空间才\(128M\)..各种奇技淫巧卡空间还是\(MLE\)到天上.后来只好乖乖的写排序+线段树 ...
- Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树)
Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树) 题目链接 题意 给定一个nm的矩阵,每行取2k的矩阵,求总 ...
- HDU4719-Oh My Holy FFF(DP线段树优化)
Oh My Holy FFF Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) T ...
- NOIP 2016 天天爱跑步 (luogu 1600 & uoj 261) - 线段树
题目传送门 传送点I 传送点II 题目大意 (此题目不需要大意,我认为它已经很简洁了) 显然线段树合并(我也不知道哪来这么多显然) 考虑将每条路径拆成两条路径 s -> lca 和 t -> ...
随机推荐
- 【Unity Shader学习笔记】Unity光照基础-高光反射
1.原理 1.1.Phong模型 计算高光反射需要表面法线.视角方向.光源方向.反射方向等. 在这四个矢量中,我们实际上只需要知道其中3个矢量即可,而第4个矢量(反射方向r)可以通过其他信息计算得到: ...
- 解锁!玩转 HelloGitHub 的新姿势
本文不会涉及太多技术细节和源码,请放心食用 大家好,我是 HelloGitHub 的老荀,好久不见啊! 我在完成 HelloZooKeeper 系列之后,就很少"露面了".但是我对 ...
- mybatis 转义符号
< <= > >= & ' " < <= > >= & ' "
- vue组件传参的方法--bus事件总线
定义:事件总线是实现vue任意组件之前传递参数的一种编程技巧,本质上就是组件的自定义事件.事件总线有很多种写法,具体的思路就是创造一个大家都可以访问到的公共的属性,在这个公共的属性上面可以调用$on, ...
- docker安装RabbitMQ及安装延迟插件
我这个安装攻略首先得保证服务器上安装过docker了 如果没安装docker请先去安装docker 1.首先说一下什么是MQ MQ(message queue)字面意思上来说消息队列,FIFO先入先出 ...
- 攻防世界pwn题:forgot
0x00:查看文件信息 该文件是32位的,canary和PIE保护机制没开. 0x01:用IDA进行静态分析 总览: 该函数就是:v5初值为1,对v2输入一串字符.然后执行一个会根据输入的字符串而修改 ...
- 深入探究MinimalApi是如何在Swagger中展示的
前言 之前看到技术群里有同学讨论说对于MinimalApi能接入到Swagger中感到很神奇,加上Swagger的数据本身是支持OpenApi2.0和OpenApi3.0使得swagger.json成 ...
- 华为云Stack首席架构师:打造“称手”的数字化工具,答好政企IT数字化转型这道必选题
摘要:数字化转型是一号位工程,数字化的工具本身就是企业的核心竞争力. 本文分享自华为云社区<华为云Stack首席架构师:打造"称手"的数字化工具,答好政企IT数字化转型这道必 ...
- CentOS中实现基于Docker部署BI数据分析
作为一个专业小白,咱啥都不懂. linux不懂,docker不懂. 但是我还想要完成领导下达的任务:在linux中安装docker后部署数据可视化工具.作为一名敬业 的打工人摆烂不可以,躺平不可以,弱 ...
- .NET程序配置文件操作(ini,cfg,config)
在程序开发过程中,我们一般会用到配置文件来设定一些参数.常见的配置文件格式为 ini, xml, config等. INI .ini文件,通常为初始化文件,是用来存储程序配置信息的文本文件. [Log ...