Luogu[YNOI2019]排序(DP,线段树)
要最优?就要一步到位,不能做“马后炮”,走“回头路”,因此将序列映射到一个假定最优序列,发现移动原序列等价于删除原序列元素,以便生成最大不下降子序列。可线段树维护。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++a)
#define nR(a,b,c) for(register int a = (b); a >= (c); --a)
#define Fill(a,b) memset(a, b, sizeof(a))
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
#define QWQ
#ifdef QWQ
#define D_e_Line printf("\n---------------\n")
#define D_e(x) cout << (#x) << " : " << x << "\n"
#define Pause() system("pause")
#define FileOpen() freopen("in.txt", "r", stdin)
#define FileSave() freopen("out.txt", "w", stdout)
#define TIME() fprintf(stderr, "\nTIME : %.3lfms\n", clock() * 1000.0 / CLOCKS_PER_SEC)
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#define FileSave() ;
#define TIME() ;
#endif
struct ios {
template<typename ATP> inline ios& operator >> (ATP &x) {
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <='9') x = x * 10 + (c ^ '0'), c = getchar();
x *= f;
return *this;
}
}io;
using namespace std;
template<typename ATP> inline ATP Max(ATP a, ATP b) {
return a > b ? a : b;
}
template<typename ATP> inline ATP Min(ATP a, ATP b) {
return a < b ? a : b;
}
template<typename ATP> inline ATP Abs(ATP a) {
return a < 0 ? -a : a;
}
const int N = 1e2 + 7;
int t[N << 2];
#define ls rt << 1
#define rs rt << 1 | 1
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
inline void Pushup(int &rt) {
t[rt] = Max(t[ls], t[rs]);
}
inline void Modify(int rt, int l, int r, int x, int w) {
if(l == r){
t[rt] = w;
return;
}
int mid = (l + r) >> 1;
if(x <= mid)
Modify(lson, x, w);
else
Modify(rson, x, w);
Pushup(rt);
}
inline int Query(int rt, int l, int r, int L, int R) {
if(L <= l && r <= R) return t[rt];
int mid = (l + r) >> 1, maxx = -1e9;
if(L <= mid) maxx = Max(maxx, Query(lson, L, R));
if(R > mid) maxx = Max(maxx, Query(rson, L, R));
return maxx;
}
int f[N], a[N], b[N];
int main() {
int Tasks;
io >> Tasks;
while(Tasks--){
int n, sum = 0;
io >> n;
R(i,1,n){
io >> a[i];
b[i] = a[i];
f[i] = 0;
sum += a[i];
}
sort(b + 1, b + n + 1);
int m = unique(b + 1, b+ n + 1) - b- 1;
R(i,1,n){
int x = lower_bound(b + 1, b + n + 1, a[i]) - b;
Modify(1, 1, m, x, Query(1, 1, m, 1, x) + a[i]);
// R(j,1,i - 1){
// if(a[i] >= a[j]){
// f[i] = Max(f[i], f[j]);
// }
// }
// f[i] += a[i];
}
// int delta = 0;
// R(i,1,n){
// delta = Max(delta, f[i]);
// }
//
printf("%d\n", sum - Query(1, 1, m, 1, m));
}
return 0;
}

Luogu[YNOI2019]排序(DP,线段树)的更多相关文章
- 2021.12.09 [HEOI2016/TJOI2016]排序(线段树+二分,把一个序列转换为01串)
2021.12.09 [HEOI2016/TJOI2016]排序(线段树+二分,把一个序列转换为01串) https://www.luogu.com.cn/problem/P2824 题意: 在 20 ...
- ZOJ 3349 Special Subsequence 简单DP + 线段树
同 HDU 2836 只不过改成了求最长子串. DP+线段树单点修改+区间查最值. #include <cstdio> #include <cstring> #include ...
- 【BZOJ4552】排序(线段树,二分答案)
[BZOJ4552]排序(线段树,二分答案) 题面 BZOJ 题解 好神的题啊 直接排序我们做不到 怎么维护? 考虑一下,如果我们随便假设一个答案 怎么检验它是否成立? 把这个数设成\(1\),其他的 ...
- hdu 3016 dp+线段树
Man Down Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- cf834D(dp+线段树区间最值,区间更新)
题目链接: http://codeforces.com/contest/834/problem/D 题意: 每个数字代表一种颜色, 一个区间的美丽度为其中颜色的种数, 给出一个有 n 个元素的数组, ...
- LUOGU P4088 [USACO18FEB]Slingshot(线段树)
传送门 解题思路 推了推式子发现是个二维数点,想了想似乎排序加线段树难写,就写了个树套树,结果写完看见空间才\(128M\)..各种奇技淫巧卡空间还是\(MLE\)到天上.后来只好乖乖的写排序+线段树 ...
- Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树)
Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树) 题目链接 题意 给定一个nm的矩阵,每行取2k的矩阵,求总 ...
- HDU4719-Oh My Holy FFF(DP线段树优化)
Oh My Holy FFF Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) T ...
- NOIP 2016 天天爱跑步 (luogu 1600 & uoj 261) - 线段树
题目传送门 传送点I 传送点II 题目大意 (此题目不需要大意,我认为它已经很简洁了) 显然线段树合并(我也不知道哪来这么多显然) 考虑将每条路径拆成两条路径 s -> lca 和 t -> ...
随机推荐
- ABP框架之——数据访问基础架构
大家好,我是张飞洪,感谢您的阅读,我会不定期和你分享阅读心得,希望我的文章能成为你成长路上的一块垫脚石,我们一起精进. 几乎所有的业务应用程序都要适用一种数据库基础架构,用来实现数据访问逻辑,以便从数 ...
- JetBrains IDE全新UI预览版来了,要做简洁与强大兼顾的IDE
5月23日,JetBrains发布了一篇博文,透露他们正在实现一套全新的界面界面. 他们认为目前行业中的用户界面趋势已经发生了演变,很多新用户认为JetBrains IDE的界面过于笨重,而且过时.所 ...
- linux-ext4格式文件误删除,该如何恢复?
在开始进行实验之前,我已经新建了一个空目录/data,并将该目录挂载了一块新硬盘,将硬盘分区格式化为ext4的格式,所以当我操作/data目录下的文件及文件夹的时候,实际上就是针对新挂载的硬盘进行数据 ...
- Python Django 功能模块
Python Django模块 Django模块,是针对有django基础,对django功能进行模块化,方便下次使用. 一.注册模块 该注册采用邮箱验证,注册成功后会发送激活链接到邮箱. 邮箱验证参 ...
- vue运行npm run dev时候,自动打开页面
在config/index.js找到dev:{}里面的autoOpenBrowser: 设置为true,重新npm run dev一次就自动弹出浏览器页面啦!
- Spring AOP快速使用教程
Spring是方法级别的AOP框架,我们主要也是以某个类的某个方法作为连接点,用动态代理的理论来说,就是要拦截哪个方法织入对应的AOP通知.为了更方便的测试我们首先创建一个接口 public in ...
- GraphX 图计算实践之模式匹配抽取特定子图
本文首发于 Nebula Graph Community 公众号 前言 Nebula Graph 本身提供了高性能的 OLTP 查询可以较好地实现各种实时的查询场景,同时它也提供了基于 Spark G ...
- Maven笔记---超详细
显眼位置标注来源:此文章为B站课程黑马程序员Maven全套教程笔记,由本人整理. Maven简介 Maven的本质是一个项目管理工具,将项目开发和管理过程抽象成一个项目对象模型(POM) POM (P ...
- 【Redis】客观下线
在sentinelHandleRedisInstance函数中,如果是主节点,需要做如下处理: void sentinelHandleRedisInstance(sentinelRedisInstan ...
- BUUCTF-easycap
easycap 看这个题目应该是流量包来的,wireshark打开即可.没什么特征,直接打开第一个包发现flag