2 散点图Scatterplot(代码下载)

散点图能够显示2个维度上2组数据的值。每个点代表一个观察点。X(水平)和Y(垂直)轴上的位置表示变量的值。研究这两个变量之间的关系是非常有用的。在seaborn中通过regplot和lmplot制作散点图,regplot和lmplot核心功能相近,regplot相对简单点,如果要定制图像更深层次功能,需要使用lmplot。此外也用Pairplot制作多变量图。该章节主要内容有:

  1. 基础散点图绘制 Basic scatterplot
  2. 更改标记参数 Control marker features
  3. 自定义线性回归拟合 Custom linear regression fit
  4. 使用分类变量为散点图着色 Use categorical variable to color scatterplot
  5. 坐标轴范围设置 Control axis limits of plot
  6. 在散点图上添加文本注释 Add text annotation on scatterplot
  7. 自定义相关图 Custom correlogram
#调用seaborn
import seaborn as sns
#调用seaborn自带数据集
df = sns.load_dataset('iris')
#显示数据集
df.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle }
\3cpre>\3ccode>.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }

sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa

1.基础散点图绘制 Basic scatterplot

# 使用regplot()函数制作散点图。您必须提供至少2个列表:X轴和Y轴上的点的位置。
# 默认情况下绘制线性回归拟合直线,可以使用fit_reg = False将其删除
# use the function regplot to make a scatterplot 有回归曲线
# scipy<1.2会有warning
sns.regplot(x=df["sepal_length"], y=df["sepal_width"]);
C:\ProgramData\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

# Without regression fit 无回归曲线
sns.regplot(x=df["sepal_length"], y=df["sepal_width"], fit_reg=False);

2. 更改标记参数 Control marker features

# 可以散点图自定义颜色,透明度,形状和大小
# Change shape of marker控制散点的形状
sns.regplot(x=df["sepal_length"], y=df["sepal_width"], marker="+", fit_reg=False);

# List of available shapes 可用的形状查看
import matplotlib
all_shapes=matplotlib.markers.MarkerStyle.markers.keys()
all_shapes
dict_keys(['.', ',', 'o', 'v', '^', '<', '>', '1', '2', '3', '4', '8', 's', 'p', '*', 'h', 'H', '+', 'x', 'D', 'd', '|', '_', 'P', 'X', 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 'None', None, ' ', ''])
# More marker customization,更具scatter_kws参数控制颜色,透明度,点的大小
sns.regplot(x=df["sepal_length"], y=df["sepal_width"], fit_reg=False, scatter_kws={"color":"darkred","alpha":0.3,"s":20});

3. 自定义线性回归拟合 Custom linear regression fit

# 您可以自定义seaborn提出的回归拟合的外观。在此示例中,颜色,透明度和宽度通过line_kws = {}选项进行控制。
sns.regplot(x=df["sepal_length"], y=df["sepal_width"], line_kws={"color":"r","alpha":0.7,"lw":5});

4. 使用分类变量为散点图着色 Use categorical variable to color scatterplot

  • 每组映射一种颜色 Map a color per group
  • 每组映射一个标记 Map a marker per group
  • 使用其他调色板 Use another palette
  • 控制每组的颜色 Control color of each group
# 每组映射一种颜色 Map a color per group
# Use the 'hue' argument to provide a factor variable hue设置species不同种类的的颜色
sns.lmplot( x="sepal_length", y="sepal_width", data=df, fit_reg=False, hue='species', legend=False);
# Move the legend to an empty part of the plot 需要通过matplotlib更改legend的位置
import matplotlib.pyplot as plt
plt.legend(loc='best');

# 每组映射一个标记 Map a marker per group
# give a list to the marker argument 通过hue设定颜色,markes设定各点的形状
sns.lmplot( x="sepal_length", y="sepal_width", data=df, fit_reg=False, hue='species', legend=False, markers=["o", "x", "1"])
# Move the legend to an empty part of the plot
plt.legend(loc='lower right');

# 使用其他调色板 Use another palette
# Use the 'palette' argument 不同种类设定不同的颜色,颜色类型使用palette设定调色板颜色
sns.lmplot( x="sepal_length", y="sepal_width", data=df, fit_reg=False, hue='species', legend=False, palette="Set2")
# Move the legend to an empty part of the plot
plt.legend(loc='lower right');

# 控制每组的颜色 Control color of each group
# Provide a dictionary to the palette argument 调色盘使用自定义颜色
dict_color=dict(setosa="#9b59b6", virginica="#3498db", versicolor="#95a5a6")
sns.lmplot( x="sepal_length", y="sepal_width", data=df, fit_reg=False, hue='species', legend=False, palette=dict_color)
# Move the legend to an empty part of the plot
plt.legend(loc='lower right');

5. 坐标轴范围设置 Control axis limits of plot

# basic scatterplot
sns.lmplot( x="sepal_length", y="sepal_width", data=df, fit_reg=False)
# control x and y limits 设置轴的范围,不过需要调用matplotlib.pyplot 模块,通常都是matplotlib和seaborn一起用
plt.ylim(0, 20)
plt.xlim(0, None)
(0, 8.122715679666298)

6. 在散点图上添加文本注释 Add text annotation on scatterplot

  • 添加一个注释 Add one annotation
  • 添加多个注释 Use a loop to annotate each marker
# 添加一个注释 Add one annotation
import pandas as pd
# 制作数据集
df_test = pd.DataFrame({
'x': [1, 1.5, 3, 4, 5],
'y': [5, 15, 5, 10, 2],
'group': ['A','other group','B','C','D']})
# 画散点图
p1=sns.regplot(data=df_test, x="x", y="y", fit_reg=False, marker="o", color="skyblue", scatter_kws={'s':400});
# 添加注释
p1.text(3+0.2, 4.5, "An annotation", horizontalalignment='left', size='medium', color='black', weight='semibold')
Text(3.2, 4.5, 'An annotation')

# 添加多个注释 Use a loop to annotate each marker
# basic plot
p1=sns.regplot(data=df_test, x="x", y="y", fit_reg=False, marker="o", color="skyblue", scatter_kws={'s':400})
# add annotations one by one with a loop
for line in range(0,df_test.shape[0]):
p1.text(df_test.x[line]+0.2, df_test.y[line], df_test.group[line], horizontalalignment='left', size='medium', color='black', weight='semibold')

7. 自定义相关图 Custom correlogram

  • 有回归方程的散点相关图 correlogram with regression
  • 无回归方程的散点相关图 correlogram without regression
  • 在相关图上表示组 Represent groups on correlogram
  • 相关图子图设置 Kind of plot for the diagonal subplots
  • 子图参数设置 parameters adjustment of subplots
# 有回归方程的散点相关图 correlogram with regression
# library & dataset
import matplotlib.pyplot as plt
import seaborn as sns
df = sns.load_dataset('iris') # with regression 有回归方程的散点相关图
# 正对角线上的图表示数据频次的直方图,其他表示散点图
sns.pairplot(df, kind="reg");

# 无回归方程的散点相关图 correlogram without regression
sns.pairplot(df, kind="scatter");

# 在相关图上表示组 Represent groups on correlogram
# 通过hue设定种类,markers不同种类的点的表示方式
# 对角线为核密度图
sns.pairplot(df, kind="scatter", hue="species", markers=["o", "s", "D"], palette="Set2")
<seaborn.axisgrid.PairGrid at 0x21cc5179710>

# 在相关图上表示组 Represent groups on correlogram
# you can give other arguments with plot_kws plot_kws更改散点图的参数
sns.pairplot(df, kind="scatter", hue="species",plot_kws=dict(s=80, edgecolor="white", linewidth=3));

# 相关图子图设置 Kind of plot for the diagonal subplots
# diag_kind有auto,hist,kde选项,hist为直方图,kde为散点图
sns.pairplot(df, diag_kind="hist");

#  子图参数设置 parameters adjustment of subplots
# You can custom it as a density plot or histogram so see the related sections 通过diag_kws调整子图参数
sns.pairplot(df, diag_kind="kde", diag_kws=dict(shade=True, bw=.05, vertical=False));

[seaborn] seaborn学习笔记2-散点图Scatterplot的更多相关文章

  1. SAS学习笔记21 散点图、条形图

  2. [seaborn] seaborn学习笔记0-seaborn学习笔记章节

    seaborn学习笔记章节 seaborn是一个基于matplotlib的Python数据可视化库.seaborn是matplotlib的高级封装,可以绘制有吸引力且信息丰富的统计图形.相对于matp ...

  3. python数据分析入门学习笔记

    学习利用python进行数据分析的笔记&下星期二内部交流会要讲的内容,一并分享给大家.博主粗心大意,有什么不对的地方欢迎指正~还有许多尚待完善的地方,待我一边学习一边完善~ 前言:各种和数据分 ...

  4. python数据分析入门学习笔记儿

    学习利用python进行数据分析的笔记儿&下星期二内部交流会要讲的内容,一并分享给大家.博主粗心大意,有什么不对的地方欢迎指正~还有许多尚待完善的地方,待我一边学习一边完善~ 前言:各种和数据 ...

  5. 学习笔记之Data Visualization

    Data visualization - Wikipedia https://en.wikipedia.org/wiki/Data_visualization Data visualization o ...

  6. 学习笔记之Data Science

    Data science - Wikipedia https://en.wikipedia.org/wiki/Data_science Data science, also known as data ...

  7. Matplotlib学习笔记(一)

    原   matplotlib学习笔记 参考:Python数据科学入门教程 Python3.6.1 jupyter notebook .caret, .dropup > .btn > .ca ...

  8. 机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据

    机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据 关键字:PCA.主成分分析.降维作者:米仓山下时间:2018-11-15机器学习实战(Ma ...

  9. 机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN)

    机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源 ...

随机推荐

  1. Linux系统管理_磁盘管理——敬请期待!!!

    df 显示磁盘空间使用情况 -a 全部文件系统列表 -h 以方便阅读的方式显示 -T 列出文件系统类型 du 查看目录和文件的磁盘空间使用情况 -a 显示目录中所有文件大小 -h 以易读方式显示文件大 ...

  2. 算法设计(动态规划实验报告) 基于动态规划的背包问题、Warshall算法和Floyd算法

    一.名称 动态规划法应用 二.目的 1.掌握动态规划法的基本思想: 2.学会运用动态规划法解决实际设计应用中碰到的问题. 三.要求 1.基于动态规划法思想解决背包问题(递归或自底向上的实现均可): 2 ...

  3. XPAND模板语言语法1.0

    XPAND模板语言语法1.0 Xpand模板语言一般写在以.xpt为结尾的文本文件中 ,以"« »" 作为开头和结尾  .Xpand语言主要包括以下几个标签: «IMPORT», ...

  4. 如何通过 C#/VB.NET 重命名 Excel 表格并设置选项卡颜色

    在 Excel 文件中创建多个工作表可以使数据更加井然有序.例如,可以为不同的区域.不同的月份/年份或不同的项目等创建不同的工作表.但要区分多个工作表,则需要更改它们的名称.同时,设置不同的选项卡颜色 ...

  5. 题解 P4058 [Code+#1]木材

    前言 这什么题啊,不就是个二分答案我从65到100都经历了一遍--(瞬间气哭) \(\sf {Solution}\) 题目理解起来不难的,大意就懒得写了. 一眼二分答案. 此题属于在形如 \(\{0, ...

  6. HTML躬行记(4)——Web音视频基础

    公司目前的业务会接触比较多的音视频,所以有必要了解一些基本概念. 文章涉及的一些源码已上传至 Github,可随意下载. 一.基础概念 本节音视频的基础概念摘自书籍<FFmpeg入门详解 音视频 ...

  7. JS数据结构与算法-数组结构

    数组结构 几乎所有的编程语言都原生支持数组类型,因为数组是最简单的内存数据结构. 数组通常情况下用于存储一系列同一种数据类型的值. 但在JavaScript里,也可以在数组中保存不同类型的值. 但我们 ...

  8. Redis系列10:HyperLogLog实现海量数据基数统计

    Redis系列1:深刻理解高性能Redis的本质 Redis系列2:数据持久化提高可用性 Redis系列3:高可用之主从架构 Redis系列4:高可用之Sentinel(哨兵模式) Redis系列5: ...

  9. perl按照健值排序

    perl中如何将按hash key值排序 BRUSH2 10752 11263 BUFFER 11264 11775 MEGASONIC 11776 12287 INPUTMODULE 12800 1 ...

  10. CB利用链及无依赖打Shiro

    前言 前面已经学习了CC1到CC7的利用链,其中在CC2中认识了java.util.PriorityQueue ,它在Java中是一个优先队列,队列中每一个元素有自己的优先级.在反序列化这个对象时,为 ...