CF850F 题解
题意
有一袋 \(n\) 个颜色球,第 \(i\) 个颜色的球有 \(a_i\) 个。
当袋子里至少有两个不同颜色的球时,执行以下步骤:
一个接一个的按照顺序随机取出两个的球,这些球的颜色可能是一样的。
把第二个球涂成第一个球的颜色,然后把两个球放回袋子里。
所有这些动作只需要一秒钟。
输出无法操作时候的期望时间,对 \(10^9+7\) 取模。
\(n\le 2500,1\le a_i \le 10^5\)
题解
分别考虑每种颜色。那么设 \(f_i\) 表示当前颜色的球有 \(i\) 个,到没有其他颜色的球时的期望秒数。
设 \(s=\sum\limits_{i=1}^n a_i\),则 \(f_0=+\infty\),\(f_s=0\),\(\forall i \in (0,s),f_i=(f_{i-1}+f_{i+1})p_i+f_i(1-2p_i)+1\)。其中 \(p_i\) 为 \(\frac{i(s-i)}{s(s-1)}\)。
但因为有无穷,这是无法求的。我们需要避开 \(0\)。因为一旦进入 \(0\) 就出不来,所以所有从 \(i\) 到 \(s\) 的合法路径都是不经过 \(0\) 的。那么我们设 \(g_i\) 表示从 \(i\) 到 \(s\) 不经过 \(0\) 的概率,易得为 \(\frac{i}{s}\)。结合其实际意义,我们可以修改上式:\(f_0=f_s=0\),\(\forall i\in(0,s),f_i=(f_{i-1}+f_{i+1})p_i+f_i(1-2p_i)+\frac{i}{s}\)。注意,此时 \(f_0\) 没有实际意义,赋 \(0\) 仅为了运算方便。
此时若用高斯消元,复杂度为 \(O(n^3V^3)\),无法接受。将其化为更简单的形式:\(f_{i+1}-f_i=f_i-f_{i-1}-\frac{s-1}{s-i}\)。因为 \(f_0=0\),我们只需求出 \(f_1\) 即可。再结合 \(f_s=0\),有 \(f_1+\sum\limits_{i=1}^{s-1}f_{i+1}-f_i=sf_1-\sum\limits_{i=1}^{s-1}\frac{s-1}{s-i}s-i=sf_1-(s-1)^2=0\)。则 \(f_1=\frac{(s-1)^2}{s}\)。递推即可。复杂度 \(O(V\log P)\),瓶颈在求逆元。
此题关键在由 \(g\) 得出 \(f\) 的方程。非常巧妙地结合其实际意义。
CF850F 题解的更多相关文章
- CF850F Rainbow Balls 题解
考虑最后变成哪一种颜色. 设 \(s = \sum\limits_{i=1}^n a_i\) 设现在有 \(k\) 种当前颜色, 需要全部变成该种颜色, 期望步数为 \(f_k\). 考虑状态转移.设 ...
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- Markdwn学习
Markdwn学习 标题: 标题 二级标题 三级标题 几个标题有几个#(最多六级标题) 字体 Hell,World! 粗体两边加** Hello,World! 斜体两边加* Hello,World! ...
- uniapp - 设置代理
uniapp - 设置代理 HbuilderX 找到 manifest.json 文件,点击源码视图 "h5" : { "title" : "案件要素 ...
- 【SQL Server】按日期分组产品
1 SELECT sell_date ,COUNT(1) AS num_sold, 2 STUFF(( 3 SELECT ',' + son.product 4 FROM (SELECT DISTIN ...
- elementUI合并单元格
<el-table :data="tableDataFormat" border :header-cell-style="{background:'#FAFAFA' ...
- 【Linux】ntpdate与ntpd区别
前两天遇到时间显示的问题,整理记录下来. 问题描述:开机程序startA自己统计自己的运行时间,每次运行时间显示异常,类似17713d45h54m. 有一些猜测:1.计算异常,出现负数:2.获取时间异 ...
- [记] OpenCV4 源码编译安装 | 记录
OpenCV4 源码编译安装 | 记录 参考资料 官方文档:https://docs.opencv.org/4.x/d7/d9f/tutorial_linux_install.html 环境 wsl2 ...
- ubuntu测网速speedometer
下载安装speedometer sudo apt-get install speedometer 查询需要测速的网卡 ifconfig 测速 speedometer -rx enp2s0 执行效果图如 ...
- Qt实现抽奖程序
一.简介 该程序命名为Lucky,实现的功能如下: 1. 加载抽奖人员名单,并保存加载路径: 2. 单击左键或者点击ctrl+s开始抽奖,并滚动显示人员名单,显示的人员名单格式为 部门-姓名. 3. ...
- version libcrypto.so.10 not defined in file libcrypto.so.10 with link time reference
I have installed IC618 latest version. But, after installation when I fire virtuoso I see following ...
- 解决在宝塔面板IIS服务器上部署svg/woff/woff2字体的问题
部署网站的字体和服务器IIS有什么关系?如果你的职责只限于一名前端开发,那么你可能很"幸福"地与这些问题擦肩而过,浑然不觉.可是本人一直都是孤军奋战,连开发环境都要自己搭建,这次又 ...