Template -「高斯消元」
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
double Abs(double x) { return x < 0 ? -x : x; }
double Max(double x, double y) { return x > y ? x : y; }
double Min(double x, double y) { return x < y ? x : y; }
int read() {
int x = 0, k = 1;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')
k = -1;
s = getchar();
}
while ('0' <= s && s <= '9') {
x = (x << 3) + (x << 1) + (s ^ 48);
s = getchar();
}
return x * k;
}
void write(int x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9)
write(x / 10);
putchar(x % 10 + '0');
}
void print(int x, char c) {
write(x);
putchar(c);
}
const int MAXN = 5e2 + 5;
const int MAXM = 3e5 + 5;
struct Elimination {
bool free[MAXN];
int n, m, rk, opt;
double a[MAXN][MAXN], x[MAXN], eps;
Elimination() { eps = 1e-12; }
Elimination(int N, int M) {
n = N;
m = M;
}
double Abs(double x) { return x < eps ? -x : x; }
void Swap(double &x, double &y) {
double t = x;
x = y;
y = t;
}
void clear() {
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++) a[i][j] = 0;
}
void calc() {
int r = 1, c = 1;
for (; r <= n && c <= m; r++, c++) {
int pos = r;
for (int i = r + 1; i <= n; i++)
if (Abs(a[i][c]) > Abs(a[pos][c]))
pos = i;
if (Abs(a[pos][c]) < eps) {
r--;
continue;
}
if (pos != r)
for (int i = c; i <= m; i++) Swap(a[r][i], a[pos][i]);
double t;
for (int i = 1; i <= n; i++)
if (i != r && Abs(a[i][c]) > eps) {
t = a[i][c] / a[r][c];
for (int j = m; j >= c; j--) a[i][j] -= t * a[r][j];
}
}
rk = r;
}
void check() {
opt = 1;
for (int i = 1; i <= n; i++)
if (Abs(a[i][i]) < eps && Abs(a[i][m]) > eps) {
opt = -1;
return;
}
for (int i = 1; i <= n; i++)
if (Abs(a[i][i]) < eps && Abs(a[i][m]) < eps) {
free[i] = true;
opt = 0;
} else
x[i] = a[i][m] / a[i][i];
}
};
Template -「高斯消元」的更多相关文章
- 「ZOJ 1354」Extended Lights Out「高斯消元」
题意:给定一个\(5\times 6\)的棋盘的\(01\)状态,每次操作可以使它自己和周围四个格子状态取反,求如何操作,输出一个\(01\)矩阵 题解:这题可以通过枚举第一行的状态然后剩下递推来做, ...
- 「BZOJ 3270」博物馆「高斯消元」
应该算高斯消元经典题了吧. 题意:一个无向连通图,有两个人分别在\(s,t\),若一个人在\(u\),每一分钟有\(p[u]\)的概率不动,否则随机前往一个相邻的结点,求在每个点相遇的概率 题解: 首 ...
- BZOJ3601. 一个人的数论(狄利克雷卷积+高斯消元)及关于「前 $n$ 个正整数的 $k$ 次幂之和是关于 $n$ 的 $k+1$ 次多项式」的证明
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3601 题解 首先还是基本的推式子: \[\begin{aligned}f_d(n) &a ...
- loj2542 「PKUWC2018」随机游走 MinMax 容斥+树上高斯消元+状压 DP
题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. ...
- LOJ 2542 「PKUWC2018」随机游走 ——树上高斯消元(期望DP)+最值反演+fmt
题目:https://loj.ac/problem/2542 可以最值反演.注意 min 不是独立地算从根走到每个点的最小值,在点集里取 min ,而是整体来看,“从根开始走到点集中的任意一个点就停下 ...
- LG3389 「模板」高斯消元法 高斯消元
问题描述 LG3389 题解 高斯消元,是用来解\(n\)元一次方程组的算法,时间复杂度\(O(n^3)\) 这样就构造出了这个方程组的矩阵 目标就是把这个矩阵左边\(n \times n\)消为单位 ...
- LG2447/BZOJ1923 「SDOI2010」外星千足虫 高斯消元
问题描述 LG2447 BZOJ1923 题解 显然是一个高斯消元,但是求的东西比较奇怪 发现这个方程组只关心奇偶性,于是可以用一个\(\mathrm{bitset}\)进行优化,用xor来进行消元操 ...
- 「中山纪中集训省选组D4T1」折射伤害 高斯消元
题目描述 在一个游戏中有n个英雄,初始时每个英雄受到数值为ai的伤害,每个英雄都有一个技能"折射",即减少自己受到的伤害,并将这部分伤害分摊给其他人.对于每个折射关系,我们用数对\ ...
- UVA11542 Square(高斯消元 异或方程组)
建立方程组消元,结果为2 ^(自由变元的个数) - 1 采用高斯消元求矩阵的秩 方法一: #include<cstdio> #include<iostream> #includ ...
随机推荐
- 神经网络 CNN 名词解释
隐藏层 不是输入或输出层的所有层都称为隐藏层. 激活和池化都没有权重 使层与操作区分开的原因在于层具有权重.由于池操作和激活功能没有权重,因此我们将它们称为操作,并将其视为已添加到层操作集合中. 例如 ...
- 入行IT,一定要会Linux吗?
现在是21世纪,是科学技术大力发展的一个时代,IT行业已经成为现在的一个非常热门的一个行业,许许多多的人都想要往IT方面发展,找IT方面相关的一个工作.很多想要接触IT行业的初学者伤透了脑筋,我该学什 ...
- 浅尝Spring注解开发_Servlet3.0与SpringMVC
浅尝Spring注解开发_Servlet 3.0 与 SpringMVC 浅尝Spring注解开发,基于Spring 4.3.12 Servlet3.0新增了注解支持.异步处理,可以省去web.xml ...
- C Primer Plus 学习笔记 -- 前六章
记录自己学习C Primer Plus的学习笔记 第一章 C语言高效在于C语言通常是汇编语言才具有的微调控能力设计的一系列内部指令 C不是面向对象编程 编译器把源代码转化成中间代码,链接器把中间代码和 ...
- strlen获取字符数组为什么是255
为什么是255呢? strlen函数的规则是,读取到0则判断字符串结束. char为1字节,只有8位. 所以...... -1就是 1111 1111, -2就是 1111 1110, 直到-128: ...
- 使用Spring MVC开发RESTful API(续)
使用多线程提高REST服务性能 异步处理REST服务,提高服务器吞吐量 使用Runnable异步处理Rest服务 AsyncController.java @RestController @GetMa ...
- 105_Power Pivot财务科目(层级深度&筛选深度)
博客:www.jiaopengzi.com 焦棚子的文章目录 请点击下载附件 1.背景 在财务科目中,需要按照科目层级来显示:在excel中都是用公式来实现,而且对于数据的管理及更新是一件头痛的事情, ...
- 虚拟环境与django版本与视图层相关知识
目录 虚拟环境 django版本区别 视图函数返回值 JsonResponse对象 form表单上传文件 request方法 FBV与CBV CBV源码剖析 模板语法传值 传值方式 传值范围 虚拟环境 ...
- vision transformer
VIT 总览 Step1 Step2
- R-CNN学习笔记
R-CNN学习笔记 step1:总览 步骤: 输入图片 先挑选大约2000个感兴趣区域(ROI)使用select search方法:[在输入的图像中寻找blobby regions(可能相同纹理,颜色 ...