【c#语言简单算法】1-角谷猜想
角谷猜想
算法目的
一个正整数x,如果是奇数就乘以3再加1,如果是偶数就析出偶数因数2ⁿ,这样经过若干个次数,最终回到1。
这里计算0-100的所有计算过程
代码实现
for (int n = 1; n <= 100; n++)
{
int a = n;
while (a != 1)
{
Console.Write(" " + a);
if (a % 2 == 1) a = a * 3 + 1; else a /= 2;
}
Console.WriteLine(" " + a);
}
调试分析

点击下方查看完整输出结果
查看完整输出结果
1
2 1
3 10 5 16 8 4 2 1
4 2 1
5 16 8 4 2 1
6 3 10 5 16 8 4 2 1
7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
8 4 2 1
9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
10 5 16 8 4 2 1
11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
12 6 3 10 5 16 8 4 2 1
13 40 20 10 5 16 8 4 2 1
14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
16 8 4 2 1
17 52 26 13 40 20 10 5 16 8 4 2 1
18 9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
20 10 5 16 8 4 2 1
21 64 32 16 8 4 2 1
22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
24 12 6 3 10 5 16 8 4 2 1
25 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
26 13 40 20 10 5 16 8 4 2 1
27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
30 15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
32 16 8 4 2 1
33 100 50 25 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
34 17 52 26 13 40 20 10 5 16 8 4 2 1
35 106 53 160 80 40 20 10 5 16 8 4 2 1
36 18 9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
37 112 56 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
39 118 59 178 89 268 134 67 202 101 304 152 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
40 20 10 5 16 8 4 2 1
41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
42 21 64 32 16 8 4 2 1
43 130 65 196 98 49 148 74 37 112 56 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
45 136 68 34 17 52 26 13 40 20 10 5 16 8 4 2 1
46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
48 24 12 6 3 10 5 16 8 4 2 1
49 148 74 37 112 56 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
50 25 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
51 154 77 232 116 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
52 26 13 40 20 10 5 16 8 4 2 1
53 160 80 40 20 10 5 16 8 4 2 1
54 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
55 166 83 250 125 376 188 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
56 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
57 172 86 43 130 65 196 98 49 148 74 37 112 56 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
59 178 89 268 134 67 202 101 304 152 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
60 30 15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
63 190 95 286 143 430 215 646 323 970 485 1456 728 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
64 32 16 8 4 2 1
65 196 98 49 148 74 37 112 56 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
66 33 100 50 25 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
67 202 101 304 152 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
68 34 17 52 26 13 40 20 10 5 16 8 4 2 1
69 208 104 52 26 13 40 20 10 5 16 8 4 2 1
70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
72 36 18 9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
73 220 110 55 166 83 250 125 376 188 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
74 37 112 56 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
75 226 113 340 170 85 256 128 64 32 16 8 4 2 1
76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
77 232 116 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
78 39 118 59 178 89 268 134 67 202 101 304 152 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
79 238 119 358 179 538 269 808 404 202 101 304 152 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
80 40 20 10 5 16 8 4 2 1
81 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
83 250 125 376 188 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
84 42 21 64 32 16 8 4 2 1
85 256 128 64 32 16 8 4 2 1
86 43 130 65 196 98 49 148 74 37 112 56 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
87 262 131 394 197 592 296 148 74 37 112 56 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
89 268 134 67 202 101 304 152 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
90 45 136 68 34 17 52 26 13 40 20 10 5 16 8 4 2 1
91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
93 280 140 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
95 286 143 430 215 646 323 970 485 1456 728 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
96 48 24 12 6 3 10 5 16 8 4 2 1
97 292 146 73 220 110 55 166 83 250 125 376 188 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
98 49 148 74 37 112 56 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
99 298 149 448 224 112 56 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
100 50 25 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
总结
- 善于利用求余,条件循环,条件判断等算法实现目标
- 角谷猜想目前在小于7*10^11的所有的正整数中都符合,非常神奇,目前还没有证明所有数都符合这个规律。
【c#语言简单算法】1-角谷猜想的更多相关文章
- hdu 1279 验证角谷猜想(简单的模拟)
Problem Description 数论中有许多猜想尚未解决,其中有一个被称为“角谷猜想”的问题,该问题在五.六十年代的美国多个著名高校中曾风行一时,这个问题是这样描述的:任何一个大于一的自然数, ...
- Openjudge-计算概论(A)-角谷猜想
描述: 所谓角谷猜想,是指对于任意一个正整数,如果是奇数,则乘3加1,如果是偶数,则除以2,得到的结果再按照上述规则重复处理,最终总能够得到1.如,假定初始整数为5,计算过程分别为16.8.4.2.1 ...
- Openjudge计算概论-角谷猜想
/*===================================== 角谷猜想 总时间限制: 1000ms 内存限制: 65536kB 描述 所谓角谷猜想,是指对于任意一个正整数,如果是奇数 ...
- POJ C程序设计进阶 编程题#2:角谷猜想
编程题#2:角谷猜想 来源: POJ(Coursera声明:在POJ上完成的习题将不会计入Coursera的最后成绩.) 注意: 总时间限制: 1000ms 内存限制: 65536kB 描述 所谓角谷 ...
- HDOJ 1279 验证角谷猜想
Problem Description 数论中有许多猜想尚未解决,其中有一个被称为"角谷猜想"的问题,该问题在五.六十年代的美国多个著名高校中曾风行一时,这个问题是这样描述的:任何 ...
- hdu 验证角谷猜想 1279
Problem Description 数论中有许多猜想尚未解决,其中有一个被称为"角谷猜想"的问题,该问题在五.六十年代的美国多个著名高校中曾风行一时,这个问题是这样描述的:任何 ...
- 验证角谷猜想(hd1279)
验证角谷猜想 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Subm ...
- 杭电 HDU 1279 验证角谷猜想
验证角谷猜想 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...
- 题解报告:hdu 1279 验证角谷猜想
Problem Description 数论中有许多猜想尚未解决,其中有一个被称为“角谷猜想”的问题,该问题在五.六十年代的美国多个著名高校中曾风行一时,这个问题是这样描述的:任何一个大于一的自然数, ...
随机推荐
- 基于Kubernetes v1.24.0的集群搭建(一)
一.写在前面 K8S 1.24作为一个很重要的版本更新,它为我们提供了很多重要功能.该版本涉及46项增强功能:其中14项已升级为稳定版,15项进入beta阶段,13项则刚刚进入alpha阶段.此外,另 ...
- C#中的枚举器
更新记录 本文迁移自Panda666原博客,原发布时间:2021年6月28日. 一.先从可枚举类型讲起 1.1 什么是可枚举类型? 可枚举类型,可以简单的理解为: 有一个类,类中有挺多的数据,用一种统 ...
- 敲了几万行源码后,我给Mybatis画了张“全地图”
作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.说说:"产"后感受 有人跟我说,手写Spring难,手写Mybatis ...
- zabbix主动式和被动式
推荐: zabbix我们使用主动式,主动式的话,可以把压力都分散到agent上,压力小. 1: zabbix主动式和被动式是相对于agent来说的. zabbix server去获取zabbix ag ...
- zabbix通过invoke调用监控服务可用性
1. 通过脚本判断线上服务是否可用 telnet 127.0.0.1 端口 #线上调用的是使用的dubbo端口 通过invoke 抓取返回的code值,脚本如下 #返回code:0则视为正常,返回其他 ...
- Linux目录结构和文件类型
文件系统目录结构 根(/)是所有文件的入口,类似于倒状的树 以 . 开头的文件为隐藏文件 文件路径之间用/分隔,包括路径在内文件名称最长4095个字节 文件名除了斜杠和NUL都可以,文件名的最大长度是 ...
- NC14301 K-th Number
NC14301 K-th Number 题目 题目描述 Alice are given an array A[1..N] with N numbers. Now Alice want to build ...
- Day04 HTML标记
路径 ./ 同级目录 ./ 进入该目录名下 ../ 上一级目录 HTML标记 图片 <!-- 图片标记 src 图片的路径 width 设置图片宽度 height 设置图片高度 title 鼠标 ...
- 基于InsightFace的高精度人脸识别,可直接对标虹软
一.InsightFace简介 InsightFace 是一个 2D/3D 人脸分析项目.InsightFace 的代码是在 MIT 许可下发布的. 对于 acadmic 和商业用途没有限制. 包含注 ...
- Oracle查看所有用户及其权限
Oracle查看所有用户及其权限:Oracle数据字典视图的种类分别为:USER,ALL 和 DBA. USER_*:有关用户所拥有的对象信息,即用户自己创建的对象信息 ALL_*:有关用户可以访问的 ...