用容斥原理求出不满足条件的个数cnt,然后用n-cnt就得到答案了。

这里不满条件的数就是能整除2,3,5,7这些数的集合并集。要计算几个集合并集的大小,我们要先将所有单个集合的大小计算出来,然后减去所有两个集合相交的部分,再加回所有三个集合相交的部分,再减去所有四个集合相交的部分,依此类推,一直计算到所有集合相交的部分。

文章推荐:http://www.cppblog.com/vici/archive/2011/09/05/155103.html

#include <iostream>
#include<bits/stdc++.h> using namespace std; int main()
{
long long n,ans;
scanf("%lld",&n);
ans=n;
ans-=(n/+n/+n/+n/);
ans+=(n/+n/+n/+n/+n/+n/);
ans-=(n/+n/+n/+n/);
ans+=(n/);
cout<<ans<<endl;
}

51nod 1284 2 3 5 7的倍数 | 容斥原理的更多相关文章

  1. 51Nod 1284 2 3 5 7的倍数 容斥原理

    1284 2 3 5 7的倍数基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 收藏 关注给出一个数N,求1至N中,有多少个数不是2 3 5 7的倍数. 例如N = 1 ...

  2. 51-nod -1284 2 3 5 7的倍数

    1284 . 2 3 5 7的倍数 基准时间限制:1 秒 空间限制:65536 KB 分值: 5 给出一个数N,求1至N中,有多少个数不是2 3 5 7的倍数. 比如N = 10,仅仅有1不是2 3 ...

  3. 51nod 1284 2 3 5 7的倍数

    从1到N 里 是2的倍数 有 N/2 个 然后大概看过这类的blog  所以运用容斥原理 直接计算 是 2 3 5 7 的个数都是多少 然后用N 减去 就是 不是2 3 5 7 的个数了 (离散好像也 ...

  4. 51Nod 1284 2 3 5 7的倍数 (容斥定理)

    给出一个数N,求1至N中,有多少个数不是2 3 5 7的倍数. 例如N = 10,只有1不是2 3 5 7的倍数. Input 输入1个数N(1 <= N <= 10^18). Outpu ...

  5. 51nod 1284:2 3 5 7的倍数 容斥原理

    1284 2 3 5 7的倍数 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题  收藏  关注 给出一个数N,求1至N中,有多少个数不是2 3 5 7的倍数. 例如N ...

  6. 2 3 5 7的倍数 (51Nod - 1284)[容斥定理]

    20180604 给出一个数N,求1至N中,有多少个数不是2 3 5 7的倍数. 例如N = 10,只有1不是2 3 5 7的倍数. Input 输入1个数N(1 <= N <= 10^1 ...

  7. 51Nod——N1284 2 3 5 7的倍数

    https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1284 基准时间限制:1 秒 空间限制:131072 KB 分值: 5  ...

  8. 51nod 1109 01组成的N的倍数

    用01 组成 N的最小倍数 这个BFS搜索就好. 类似这道:  ZOJ Problem Set - 1530 每次 要么是0 要么是1, 记入余数,和前驱. #include<bits/stdc ...

  9. POJ 1426 Find The Multiple &amp;&amp; 51nod 1109 01组成的N的倍数 (BFS + 同余模定理)

    Find The Multiple Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21436   Accepted: 877 ...

随机推荐

  1. HDU 2494/POJ 3930 Elevator(模拟)(2008 Asia Regional Beijing)

    Description Too worrying about the house price bubble, poor Mike sold his house and rent an apartmen ...

  2. 软件工程课堂作业(十一)——NABC分析

    一.团队开发项目:基于Android的重力感应的解锁APP 二.项目特点:区别于一般解锁软件用开机按钮开锁解锁,我们的重力解锁软件根据动作实现解锁,减少了开机按钮的使用频率,提高寿命. 三.NABC分 ...

  3. java—连连看GUI

    1.连连看棋盘图形化 package Link; import java.awt.Color; import java.awt.Font; import java.awt.Graphics; impo ...

  4. 《剑指offer》---丑数

    本文算法使用python3实现 1. 问题1 1.1 题目描述:   把只包含因子2.3和5的数称作丑数(Ugly Number).判断一个数是否是丑数.   时间限制:1s:空间限制:32768K ...

  5. djano modles values+ajax实现无页面刷新更新数据

    做项目的过程中想通过不刷新页面的方式来进行页面数据刷新,开始使用http://www.cnblogs.com/ianduin/p/7761400.html方式将查询结果数据进行序列化.发现可以行,但是 ...

  6. 第四章 持续集成jenkins工具使用之项目配置

    1.1   创建项目 点击“新建”,输入项目名称,选择“构建一个自由风格的软件项目”,点击ok,项目创建完成. 1.2   配置项目 点击步骤1创建的项目,进入项目页面,如图: 点击“配置”,进入配置 ...

  7. C# 中的 Async 和 Await

    这篇文章由Filip Ekberg为DNC杂志编写. 自跟随着.NET 4.5 及Visual Studio 2012的C# 5.0起,我们能够使用涉及到async和await关键字的新的异步模式.有 ...

  8. ::before和::after 常见的用法

      .lizi:after{ content: "I'M after"; /*插入字符串*/ content: "attr(id)"; /*插入当前元素属性*/ ...

  9. 【.Net】Visual Studio的调试技巧

    这是我写的关于VS2010和.Net4发布的博客系列的第26篇. 今天的博文包含了一些有用的能用于VS的调试技巧. 我的朋友Scott Cate(他写了很多很好的关于VS使用技巧和窍门的博客)最近向我 ...

  10. I/O复用----select

    2018-07-31 (星期二)I/O复用:    一个应用程序通常需要服务一个以上的文件描述符.    例如stdin,stdout,进程间通信以及若干文件进行I/O,如果不借助线程的话,(线程通常 ...