Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

Each number in C may only be used once in the combination.

Note:

  • All numbers (including target) will be positive integers.
  • Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
  • The solution set must not contain duplicate combinations.

For example, given candidate set 10,1,2,7,6,1,5 and target 8
A solution set is: 
[1, 7] 
[1, 2, 5] 
[2, 6] 
[1, 1, 6]

题目实际和组合之和(见其他博文)很像,但是这里组合中的数是可以有重复的,但是每个数最多只能用一次,所以说实现上与前面那个有点不相似的地方,代码见下,注释写的还是比较清楚的:

 class Solution {
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
tmpCdd = candidates;
sort(tmpCdd.begin(), tmpCdd.end());
vector<int> tmpVec;
dfs(tmpVec, , target);//这个dfs的参数分别是当前vec中含有的元素数目
return result; //序号起始以及,距离target还差的数目
}
private:
vector<int> tmpCdd;
vector<vector<int>> result;
void dfs(vector<int> & tmpVec, int index, int tgt)
{
if(tgt == ){
result.push_back(tmpVec);
return; //达到target,剪枝
}
if(index == tmpCdd.size()) return;
else{
for(int idx = index; idx < tmpCdd.size(); ++idx){
if (idx != index && tmpCdd[idx] == tmpCdd[idx - ])
continue; //这一步的主要目标是防止相邻相同的数和其他数一起匹配成为多个相同的vector,很关键。
if(tmpCdd[idx] <= tgt){
tmpVec.push_back(tmpCdd[idx]); //这其他的实际上和combinationSum1是相同的
dfs(tmpVec, idx + , tgt - tmpCdd[idx]);
tmpVec.pop_back();
}
}
}
}
};

大体就是这样,感觉写的有点乱,想想以后可能再来改。

java版本如下所示,相比上面的写的条理相对的要清楚一点,代码如下所示:

 public class Solution {
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
List<List<Integer>> ret = new ArrayList<List<Integer>>();
Arrays.sort(candidates);
for(int i = 0; i < candidates.length; ++i){
List<Integer> curr = new ArrayList<Integer>();
if(i != 0 && candidates[i] == candidates[i-1]) //注意这里和下面同样的地方,防止出现相同的组合
continue;
curr.add(candidates[i]);
getCombination(ret, i + 1, target - candidates[i], curr, candidates);
curr.remove(curr.size() - 1);
}
return ret;
}
public void getCombination(List<List<Integer>> ret, int index, int target, List<Integer> tmpCdd, int [] candidates){
if(index > candidates.length)
return;
if(target < 0){
return;
}else if(target == 0){
ret.add(new ArrayList<Integer>(tmpCdd));
return;
}else{
for(int i = index; i < candidates.length; ++i){
if(i != index && candidates[i] == candidates[i-1])
continue;
tmpCdd.add(candidates[i]);
getCombination(ret, i + 1, target - candidates[i], tmpCdd, candidates);
tmpCdd.remove(tmpCdd.size() - 1);
}
}
}
}

LeetCode OJ:Combination Sum II (组合之和 II)的更多相关文章

  1. [LeetCode] 377. Combination Sum IV 组合之和 IV

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  2. [LeetCode] 216. Combination Sum III 组合之和 III

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

  3. [LeetCode] 377. Combination Sum IV 组合之和之四

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  4. [LeetCode] 40. Combination Sum II 组合之和 II

    Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...

  5. [LeetCode] Combination Sum IV 组合之和之四

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  6. [LeetCode] Combination Sum III 组合之和之三

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

  7. LeetCode 39. Combination Sum (组合的和)

    Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique c ...

  8. 377 Combination Sum IV 组合之和 IV

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  9. [leetcode]40. Combination Sum II组合之和之二

    Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...

随机推荐

  1. 006-虚拟机中centos7实现nat静态ip上网

    1.设置虚拟机网卡VMnet8 2.修改虚拟机参数 (1).点击编辑-->虚拟网络编辑器,如下图设置 (2)nat设置如下[使用默认即可,记住网关.掩码等,非常重要,因为在centos里面要设置 ...

  2. [设计模式]迭代子模式 Iterator

    迭代子模式又叫做游标cursor模式,是对象的行为模式.迭代子模式可以顺序的访问一个聚集中的元素而不必暴露聚集的内部表象. 迭代子模式被广泛的应用在Java语言的API中的几个设计模式之一.在Java ...

  3. springmvc get post put delete

    web.xml <!-- 配置 org.springframework.web.filter.HiddenHttpMethodFilter: 可以把 POST 请求转为 DELETE 或 POS ...

  4. CentOS中nginx负载均衡和反向代理的搭建

    1: 修改centos命令行启动(减少内存占用): vim /etc/inittab :initdefault: --> 修改5为3 若要界面启动使用 startx 2:安装jdk )解压:jd ...

  5. memcached单点

    一.Repcached (memcached同步补丁) 下载地址:http://sourceforge.net/projects/repcached/files/repcached/2.2.1-1.2 ...

  6. html 基础 表单

    一.表单 <form id="" name="" method="post/get" action="负责处理的服务端&qu ...

  7. What is CRC and how does it works?

    What is CRC and how does it works? CRC errors refer to Layer 1 or 2 issues. Two things you should ch ...

  8. Linux下针对路由功能配置iptables的方法详解

    作为公司上网的路由器需要实现的功能有nat地址转换.dhcp.dns缓存.流量控制.应用程序控制,nat地址转换通过iptables可以直 接实现,dhcp服务需要安装dhcpd,dns缓存功能需要使 ...

  9. Autofac is designed to track and dispose of resources for you.

    https://autofaccn.readthedocs.io/en/latest/best-practices/ Autofac is designed to track and dispose ...

  10. UVA 1640 The Counting Problem(按位dp)

    题意:给你整数a.b,问你[a,b]间每个数字分解成单个数字后,0.1.2.3.4.5.6.7.8.9,分别有多少个 题解:首先找到[0,b]与[0,a-1]进行区间减法,接着就只是求[0,x] 对于 ...