题目大意

给定长为$n$的序列$A$,定义长为$k$的区间中位数为从小到大排完序后第$\lfloor\frac{k}{2}\rfloor$个数的大小。

每次询问给定$l_1,r_1,l_2,r_2$有多少个子区间满足中位数$\in[l_1,r_1]$长度$\in[l_2,r_2]$。

询问不超过五组。

题解

将问题提转化成中位数$\leq K$,长度$\in [l,r]$的子区件有多少个,答案相减即为最终答案。

发现对于每一个$A_i$,若子区间内$A_i\leq K$的数量至少达到区间长度的一半即可。

那么将$A_i\leq K$看做$1$,否则看做$-1$,求区间和$\geq 0$,区间长度$\in [l,r]$的数量即可。

这个只需要用主席树或者删电加点的树状数组维护即可。

复杂度$O(2nm\log n)$。

#include<bits/stdc++.h>
#define debug(x) cerr<<#x<<" = "<<x
#define sp <<" "
#define el <<endl
#define LL long long
#define M 100020
using namespace std;
int read(){
int nm=0,fh=1; char cw=getchar();
for(;!isdigit(cw);cw=getchar()) if(cw=='-') fh=-fh;
for(;isdigit(cw);cw=getchar()) nm=nm*10+(cw-'0');
return nm*fh;
}
int s[M],n,m,p[M],cnt,rt[M],bf[M<<2],nt[M<<2],c[M<<2];
void ins(int pos,int dt){for(int k=pos;k<(M<<1);k=nt[k]) c[k]+=dt;}
int qry(int pos){int tt=0;for(int k=pos;k;k=bf[k]) tt+=c[k];return tt;}
LL solve(int Mid,int Min_len,int Max_len){
LL res=0;
memset(c,0,sizeof(c));
for(int i=1;i<=n;i++){
s[i]=(p[i]<=Mid?s[i-1]+1:s[i-1]-1);
int t1=i-Max_len-1,t2=i-Min_len;
if(t1>=0) ins(s[t1]+M,-1);
if(t2>=0) ins(s[t2]+M,1); res+=qry(s[i]+M);
}return res;
}
int main(){
n=read();
for(int i=1;i<(M<<2);i++) bf[i]=i-(i&-i),nt[i]=i+(i&-i);
for(int i=1;i<=n;i++) p[i]=read();
for(int T=read();T;--T){
int l1=read(),r1=read(),l2=read(),r2=read();
printf("%lld\n",solve(r1,l2,r2)-solve(l1-1,l2,r2));
}
return 0;
}

NOIP模拟题 序列的更多相关文章

  1. NOIP模拟题汇总(加厚版)

    \(NOIP\)模拟题汇总(加厚版) T1 string 描述 有一个仅由 '0' 和 '1' 组成的字符串 \(A\),可以对其执行下列两个操作: 删除 \(A\)中的第一个字符: 若 \(A\)中 ...

  2. 8.22 NOIP 模拟题

      8.22 NOIP 模拟题 编译命令 g++ -o * *.cpp gcc -o * *.c fpc *.pas 编译器版本 g++/gcc fpc 评测环境 位 Linux, .3GHZ CPU ...

  3. 【入门OJ】2003: [Noip模拟题]寻找羔羊

    这里可以复制样例: 样例输入: agnusbgnus 样例输出: 6 这里是链接:[入门OJ]2003: [Noip模拟题]寻找羔羊 这里是题解: 题目是求子串个数,且要求简单去重. 对于一个例子(a ...

  4. 9.9 NOIP模拟题

    9.9 NOIP模拟题 T1 两个圆的面积求并 /* 计算圆的面积并 多个圆要用辛普森积分解决 这里只有两个,模拟计算就好 两圆相交时,面积并等于中间两个扇形面积减去两个三角形面积 余弦定理求角度,算 ...

  5. NOIP模拟题17.9.26

    B 君的任务(task)[题目描述]与君初相识,犹如故人归.B 君看到了Z 君的第一题,觉得很难.于是自己出了一个简单题.你需要完成n 个任务,第i 任务有2 个属性ai; bi.其中ai 是完成这个 ...

  6. noip模拟题题解集

    最近做模拟题看到一些好的题及题解. 升格思想: 核电站问题 一个核电站有N个放核物质的坑,坑排列在一条直线上.如果连续M个坑中放入核物质,则会发生爆炸,于是,在某些坑中可能不放核物质. 任务:对于给定 ...

  7. 一些noip模拟题一句话题解

    Problem A: 序列 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 12  Solved: 9[Submit][Status][Web Boar ...

  8. NOIP 模拟题

    目录 T1 : grid T2 : ling T3 : threebody 数据可私信我. T1 : grid 题目:在一个\(n*n\)的方格中,你只能斜着走.为了让问题更简单,你还有一次上下左右走 ...

  9. 9.22 NOIP模拟题

    吉林省信息学奥赛 2017 冬令营                                                                                    ...

随机推荐

  1. Sublime Text 3 快捷键 一览

    Sublime Text 3 快捷键精华版 Ctrl+Shift+P:打开命令面板 Ctrl+P:搜索项目中的文件 Ctrl+G:跳转到第几行 Ctrl+W:关闭当前打开文件 Ctrl+Shift+W ...

  2. QT5.6.0 鼠标支持

    QT5用QPA换了QWS之后,USB鼠标就不知道怎么支持,网上搜啊搜,各种尝试,终于可以了. export TSLIB_ROOT=/mnt/sdcard/tslib export TSLIB_PLUG ...

  3. PHP面向对象程序设计之抽象类和抽象方法

    抽象类: 抽象类不能被实例化.抽象类中只定义(或部分实现)子类需要的方法.子类可以继承它并且通过实现其中的抽象方法,使抽象类具体化. 我们可以用一个abstract关键字来定义一个抽象类,示例如下: ...

  4. 2 Powershell与Cmd以及Unix/Linux Shell

    上篇文章我说道,windows为了改变用户对其console界面的诟病,于是就从windows   vista开始,计划要改变这种局面,于是就有 了Powershell的出现. 1.兼容shell命令 ...

  5. centos 安装 谷歌BBR

    使用root用户登录,运行以下命令: wget --no-check-certificate https://github.com/teddysun/across/raw/master/bbr.sh  ...

  6. DATASTAGE中ODBC连接的配置

    修改2个配置文件: cat /mistel/IBM/InformationServer/Server/DSEngine/.odbc.ini cat /mistel/IBM/InformationSer ...

  7. hive 数据清理--数据去重

    hive> select * from (select *,row_number() over (partition by id) num from t_link) t where t.num= ...

  8. 深入理解SELECT ... LOCK IN SHARE MODE和SELECT ... FOR UPDATE

    概念和区别 SELECT ... LOCK IN SHARE MODE走的是IS锁(意向共享锁),即在符合条件的rows上都加了共享锁,这样的话,其他session可以读取这些记录,也可以继续添加IS ...

  9. HDU1402 A * B Problem Plus

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  10. ImageView显示图像控件

    ImageView显示图像控件 一.简介 1. 2. ImageView,图像视图,直接继承自View类,它的主要功能是用于显示图片,实际上它不仅仅可以用来显示图片,任何Drawable对象都可以使用 ...