【luogu P1939 【模板】矩阵加速(数列)】 题解
题目链接:https://www.luogu.org/problemnew/show/P1939
对于矩阵推序列的式子:
由题意知:
f[x+1] =1f[x] + 0f[x-1] + 1f[x-2]
f[x] = 1f[x] + 0f[x-1] + 0f[x-2]
f[x-1] = 0f[x] + 1f[x-1] + 0*f[x-2]
所以矩阵初项的系数:
1 1 0
0 0 1
1 0 0
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define ll long long
using namespace std;
const int maxn = 110;
const int mod = 1000000007;
struct Matrix{
ll m[maxn][maxn];
}A, E, Ans;
ll n, q[maxn];
Matrix mul(Matrix A, Matrix B)
{
Matrix C;
for(int i = 1; i <= 3; i++)
for(int j = 1; j <= 3; j++)
{
C.m[i][j] = 0;
for(int k = 1; k <= 3; k++)
C.m[i][j] = (C.m[i][j] + A.m[i][k] * B.m[k][j] % mod) % mod;
}
return C;
}
Matrix qpow(Matrix A, ll k)
{
Matrix S = E;
while(k)
{
if(k & 1) S = mul(S, A);
A = mul(A, A);
k = k >> 1;
}
return S;
}
int main()
{
cin>>n;
E.m[2][2] = 1;
E.m[1][1] = 1;
E.m[3][3] = 1;
A.m[1][1] = 1;
A.m[1][2] = 1;
A.m[2][3] = 1;
A.m[3][1] = 1;
for(int i = 1; i <= n; i++)
{
ll k;
cin>>k;
Ans = qpow(A, k);
cout<<Ans.m[1][2]<<endl;
}
return 0;
}
【luogu P1939 【模板】矩阵加速(数列)】 题解的更多相关文章
- 【洛谷P1939】 矩阵加速模板
https://www.luogu.org/problemnew/show/P1939 矩阵快速幂 斐波那契数列 首先看一下斐波那契数列的矩阵快速幂求法: 有一个矩阵1*2的矩阵|f[n-2],f[n ...
- 洛谷 [P1939] 矩阵加速数列
矩阵快速幂模版 #include <iostream> #include <cstring> #include <cstdlib> #include <alg ...
- Luogu P3390 【模板】矩阵快速幂&&P1939 【模板】矩阵加速(数列)
补一补之前的坑 因为上次关于矩阵的那篇blog写的内容太多太宽泛了,所以这次把一些板子和基本思路理一理 先看这道模板题:P3390 [模板]矩阵快速幂 首先我们知道矩阵乘法满足结合律而不满足交换律的一 ...
- LuoGu P1939 【模板】矩阵加速(数列)
板子传送门 矩阵快速幂学完当然要去搞一搞矩阵加速啦 (矩阵加速相对于矩阵快速幂来说就是多了一个构造矩阵的过程) 关于怎样来构造矩阵,这位大佬讲的很好呢 构造出矩阵之后,我们再去用矩阵快速幂乘出来,取[ ...
- P1939【模板】矩阵加速(数列)
P1939[模板]矩阵加速(数列)难受就难受在a[i-3],这样的话让k=3就好了. #include<iostream> #include<cstdio> #include& ...
- 洛谷 P1939 【模板】矩阵加速(数列) 解题报告
P1939 [模板]矩阵加速(数列) 题目描述 a[1]=a[2]=a[3]=1 a[x]=a[x-3]+a[x-1] (x>3) 求a数列的第n项对1000000007(10^9+7)取余的值 ...
- [洛谷P1939]【模板】矩阵加速(数列)
题目大意:给你一个数列a,规定$a[1]=a[2]=a[3]=1$,$a[i]=a[i-1]+a[i-3](i>3)$求$a[n]\ mod\ 10^9+7$的值. 解题思路:这题看似是很简单的 ...
- 洛谷 P1939 矩阵加速(数列)
题意简述 \(a[1]=a[2]=a[3]=1\) \(a[x]=a[x−3]+a[x−1](x>3)\) 求a数列的第n项对1000000007取余的值. 题解思路 矩阵加速 设\[ F=\b ...
- 斐波那契数列F(n)【n超大时的(矩阵加速运算) 模板】
hihocoder #1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个 ...
随机推荐
- [android] 通过比对进行容器联动
当中间容器变化之后,标题栏也要跟着变化 设计个比对依据: 抽象类BaseView中定义抽象方法,每个继承的View都必须实现,为自己的界面定义一个唯一的int常量,作为比对依据 降低容器之间的耦合度: ...
- java.lang.RuntimeException: Canvas: trying to draw too large(107331840bytes) bitmap.
环境: Android 8.0.1 MIUI 真机测试闪退 gradle 4.1 compileSdkVersion 26 buildToolsVersion '26.0.2' minSdkVersi ...
- 读EntityFramework.DynamicFilters源码_心得_设计思想_04
前几次,我们从说明文档,示例,单元测试了解了怎么用这个动态过滤器,那么如果仅仅是为了实现目的,知道怎么用就可以完成相应的功能开发,但我还想了解的问题是 作者是怎么将动态过滤器与EF结合的 有哪些设计思 ...
- freemarker生成word,表格分页
在做项目的过程中,使用到了freemarker生成word.又有一个需求,明细的要确定有多少页,这就用到了换页的xml标签了,找了我好久 <w:p ><w:r><w:br ...
- 基于Maven的Spring + Spring MVC + Mybatis的环境搭建
基于Maven的Spring + Spring MVC + Mybatis的环境搭建项目开发,先将环境先搭建起来.上次做了一个Spring + Spring MVC + Mybatis + Log4J ...
- Python入门-生成器和生成器表达式
昨天我们说了迭代器,那么和今天说的生成器是什么关系呢? 一.生成器 什么是生成器?说白了生成器的本质就是迭代器. 在Python中中有三种方式来获取生成器. 1.通过生成器函数 2.通过各种推导式来实 ...
- easyui扩展行默认展开 以及 去除滚动条
问题背景: 在做打印页面的时候,要求有详细的默认展开显示. 遇到的问题: 1)在用扩展行的时候,grid的所有行都添加了展开收起的图标,(第二行没有明细)如下 2)默认展示有详细行的时候,内 ...
- python 进程池的使用
进程同步 进程的数据是独立存在的,进程也能加锁. from multiprocessing import Process, Lock def f(l,i): l.acquire() print('he ...
- eclipse安装checkStyle
今天用eclipse mars 安装checkstyle 代码测试工具,安装完后重启竟然没有,最后发现原来是 自己安装的步骤错了,记录下. 1. 我的版本是:Version: Mars.2 Relea ...
- Data Flow ->> Excel Connection遇到错误:[Excel Source [16]] Error: SSIS Error Code DTS_E_CANNOTACQUIRECONNECTIONFROMCONNECTIONMANAGER.....
在SSIS下做Excel导入数据的时候遇到下面的错误 [Excel Source [16]] Error: SSIS Error Code DTS_E_CANNOTACQUIRECONNECTIONF ...