题意

给定一个集合,有多少个非空子集,能划分成和相等的两份。$n\leq 20$

题解

看到这个题,首先能想到的是$3n$的暴力枚举,枚举当前元素是放入左边还是放入右边或者根本不放,但是显然是不可取的,看到$n$只有20,考虑折半搜索,将集合分成两部分,每个部分$3{\frac{n}{2}}$枚举。

接着考虑如何合并,在枚举时计一个$delta$表示此时左边和右边的差值,这样在右半部分每一次枚举完后我们可以直接在左半部分查找是否存在一个$delta$相等,如果相等,则两个集合的并集满足条件

#include <map>
#include <vector>
#include <cstdio>
typedef long long ll; template <typename T>
inline void read(T &x) {
x = 0; char ch = getchar();
while (ch < '0' || ch > '9') ch = getchar();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar();
} const int N = 21;
int n, m, a[N], cnt, ans;
std::map <int, int> Ma;
std::vector <int> S[1 << N];
bool ok[1 << N]; void dfs1(int i, int s, int d) {
if (i > m) {
if (Ma.find(d) == Ma.end()) Ma[d] = ++cnt;
int index = Ma[d];
//记录delta,由于可能存在多个相等的delta,开一个vector记下它是哪个集合(状态压缩)
S[index].push_back(s);
return ;
}
dfs1(i + 1, s, d);
dfs1(i + 1, s | (1 << i), d + a[i]);
dfs1(i + 1, s | (1 << i), d - a[i]);
} void dfs2(int i, int s, int d) {
if (i > n) {
if (Ma.find(d) == Ma.end()) return ;
int index = Ma[d];
std::vector<int>::iterator it;
//直接查询然后置他们的并集为真即可
for (it = S[index].begin(); it != S[index].end(); ++it)
ok[*it | s] = true;
return ;
}
dfs2(i + 1, s, d);
dfs2(i + 1, s | (1 << i), d + a[i]);
dfs2(i + 1, s | (1 << i), d - a[i]);
} int main () {
read(n); m = n >> 1;
for(int i = 1; i <= n; ++i) read(a[i]);
dfs1(1, 0, 0);
dfs2(m + 1, 0, 0);
for(int i = (1 << (n + 1)) - 1; i >= 1; --i)
ans += ok[i];
printf("%d\n", ans);
return 0;
}

SPOJ11469 Subset(折半枚举)的更多相关文章

  1. POJ 3977 Subset(折半枚举+二分)

    SubsetTime Limit: 30000MS        Memory Limit: 65536KTotal Submissions: 6754        Accepted: 1277 D ...

  2. POJ3977 Subset 折半枚举

    题目大意是给定N个数的集合,从这个集合中找到一个非空子集,使得该子集元素和的绝对值最小.假设有多个答案,输出元素个数最少的那个. N最多为35,假设直接枚举显然是不行的. 可是假设我们将这些数分成两半 ...

  3. POJ 3977 - subset - 折半枚举

    2017-08-01 21:45:19 writer:pprp 题目: • POJ 3977• 给定n个数,求一个子集(非空)• 使得子集内元素和的绝对值最小• n ≤ 35 AC代码如下:(难点:枚 ...

  4. poj 3977 Subset(折半枚举+二进制枚举+二分)

    Subset Time Limit: 30000MS   Memory Limit: 65536K Total Submissions: 5721   Accepted: 1083 Descripti ...

  5. Load Balancing 折半枚举大法好啊

    Load Balancing 给出每个学生的学分.   将学生按学分分成四组,使得sigma (sumi-n/4)最小.         算法:   折半枚举 #include <iostrea ...

  6. CSU OJ PID=1514: Packs 超大背包问题,折半枚举+二分查找。

    1514: Packs Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 61  Solved: 4[Submit][Status][Web Board] ...

  7. NYOJ 1091 超大01背包(折半枚举)

    这道题乍一看是普通的01背包,最最基础的,但是仔细一看数据,发现普通的根本没法做,仔细观察数组发现n比较小,利用这个特点将它划分为前半部分和后半部分这样就好了,当时在网上找题解,找不到,后来在挑战程序 ...

  8. Codeforces 888E - Maximum Subsequence(折半枚举(meet-in-the-middle))

    888E - Maximum Subsequence 思路:折半枚举. 代码: #include<bits/stdc++.h> using namespace std; #define l ...

  9. Codeforces 912 E.Prime Gift (折半枚举、二分)

    题目链接:Prime Gift 题意: 给出了n(1<=n<=16)个互不相同的质数pi(2<=pi<=100),现在要求第k大个约数全在所给质数集的数.(保证这个数不超过1e ...

  10. poj_3977 折半枚举

    题目大意 给定N(N<=35)个数字,每个数字都<= 2^15. 其中一个或多个数字加和可以得到s,求出s的绝对值的最小值,并给出当s取绝对值最小值时,需要加和的数字的个数. 题目分析 需 ...

随机推荐

  1. 解决win10 CPU占用高的问题

    [PConline 技巧]很多笔记本用户在升级到Win10后,都遇到了这样一个问题,那就是Win10的CPU占用明显高于Win7.这个问题对于台式机可能还算不了什么,顶多就是偶尔卡一下罢了.可由于笔记 ...

  2. 在此位置打开CMD

    Windows Registry Editor Version 5.00 [HKEY_CLASSES_ROOT\folder\shell\cmd]@="在此位置打开CMD"[HKE ...

  3. 【BZOJ4884】太空猫 [DP]

    太空猫 Time Limit: 1 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 太空猫(SpaceCat)是一款画面精 ...

  4. 「6月雅礼集训 2017 Day5」仰望星空

    [题目大意] 给你$n$个点,被一个半径为$R$的元圆划分成内(包含边界).外两个部分. 要连若干线,每个点只能连一条线,不存在重点和三点共线. 线只能连在内部点和外部点之间,线长度不超过$d$. 如 ...

  5. 牛客网刷题(纯java题型 1~30题)

    牛客网刷题(纯java题型 1~30题) 应该是先extend,然后implement class test extends A implements B { public static void m ...

  6. 深入浅出MyBatis:JDBC和MyBatis介绍

    JDBC相关概念 Java程序都是通过JDBC连接数据库的,通过SQL对数据库编程,JDBC是由SUN公司提出的一些列规范,只定义了接口规范,具体实现由各个数据库厂商去实现,它是一种典型的桥接模式. ...

  7. 边缘检测:Canny算子,Sobel算子,Laplace算子

    1.canny算子 Canny边缘检测算子是John F.Canny于 1986 年开发出来的一个多级边缘检测算法.更为重要的是 Canny 创立了边缘检测计算理论(Computational the ...

  8. Part2-HttpClient官方教程-Chapter6-HTTP缓存(HTTP Caching)

    原文链接 6.1. 一般概念 HttpClient Cache提供了一个与HTTP / 1.1兼容的缓存层与HttpClient(浏览器缓存的Java等价物.)一起使用.该实现遵循责任链设计模式,其中 ...

  9. 2017-2018-1 20179205《Linux内核原理与设计》第七周作业

    <Linux内核原理与设计>第七周作业 视频学习及操作分析 创建一个新进程在内核中的执行过程 fork.vfork和clone三个系统调用都可以创建一个新进程,而且都是通过调用do_for ...

  10. 以下suse11.3x64可以安装pycrypto-2.6.1

    rpm -qa adaptec-firmware-1.35-2.15.4gnome-menus-branding-SLED-11.1-14.26man-pages-3.15-2.23.1crackli ...