SPOJ11469 Subset(折半枚举)
题意
给定一个集合,有多少个非空子集,能划分成和相等的两份。$n\leq 20$
题解
看到这个题,首先能想到的是$3n$的暴力枚举,枚举当前元素是放入左边还是放入右边或者根本不放,但是显然是不可取的,看到$n$只有20,考虑折半搜索,将集合分成两部分,每个部分$3{\frac{n}{2}}$枚举。
接着考虑如何合并,在枚举时计一个$delta$表示此时左边和右边的差值,这样在右半部分每一次枚举完后我们可以直接在左半部分查找是否存在一个$delta$相等,如果相等,则两个集合的并集满足条件
#include <map>
#include <vector>
#include <cstdio>
typedef long long ll;
template <typename T>
inline void read(T &x) {
x = 0; char ch = getchar();
while (ch < '0' || ch > '9') ch = getchar();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar();
}
const int N = 21;
int n, m, a[N], cnt, ans;
std::map <int, int> Ma;
std::vector <int> S[1 << N];
bool ok[1 << N];
void dfs1(int i, int s, int d) {
if (i > m) {
if (Ma.find(d) == Ma.end()) Ma[d] = ++cnt;
int index = Ma[d];
//记录delta,由于可能存在多个相等的delta,开一个vector记下它是哪个集合(状态压缩)
S[index].push_back(s);
return ;
}
dfs1(i + 1, s, d);
dfs1(i + 1, s | (1 << i), d + a[i]);
dfs1(i + 1, s | (1 << i), d - a[i]);
}
void dfs2(int i, int s, int d) {
if (i > n) {
if (Ma.find(d) == Ma.end()) return ;
int index = Ma[d];
std::vector<int>::iterator it;
//直接查询然后置他们的并集为真即可
for (it = S[index].begin(); it != S[index].end(); ++it)
ok[*it | s] = true;
return ;
}
dfs2(i + 1, s, d);
dfs2(i + 1, s | (1 << i), d + a[i]);
dfs2(i + 1, s | (1 << i), d - a[i]);
}
int main () {
read(n); m = n >> 1;
for(int i = 1; i <= n; ++i) read(a[i]);
dfs1(1, 0, 0);
dfs2(m + 1, 0, 0);
for(int i = (1 << (n + 1)) - 1; i >= 1; --i)
ans += ok[i];
printf("%d\n", ans);
return 0;
}
SPOJ11469 Subset(折半枚举)的更多相关文章
- POJ 3977 Subset(折半枚举+二分)
SubsetTime Limit: 30000MS Memory Limit: 65536KTotal Submissions: 6754 Accepted: 1277 D ...
- POJ3977 Subset 折半枚举
题目大意是给定N个数的集合,从这个集合中找到一个非空子集,使得该子集元素和的绝对值最小.假设有多个答案,输出元素个数最少的那个. N最多为35,假设直接枚举显然是不行的. 可是假设我们将这些数分成两半 ...
- POJ 3977 - subset - 折半枚举
2017-08-01 21:45:19 writer:pprp 题目: • POJ 3977• 给定n个数,求一个子集(非空)• 使得子集内元素和的绝对值最小• n ≤ 35 AC代码如下:(难点:枚 ...
- poj 3977 Subset(折半枚举+二进制枚举+二分)
Subset Time Limit: 30000MS Memory Limit: 65536K Total Submissions: 5721 Accepted: 1083 Descripti ...
- Load Balancing 折半枚举大法好啊
Load Balancing 给出每个学生的学分. 将学生按学分分成四组,使得sigma (sumi-n/4)最小. 算法: 折半枚举 #include <iostrea ...
- CSU OJ PID=1514: Packs 超大背包问题,折半枚举+二分查找。
1514: Packs Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 61 Solved: 4[Submit][Status][Web Board] ...
- NYOJ 1091 超大01背包(折半枚举)
这道题乍一看是普通的01背包,最最基础的,但是仔细一看数据,发现普通的根本没法做,仔细观察数组发现n比较小,利用这个特点将它划分为前半部分和后半部分这样就好了,当时在网上找题解,找不到,后来在挑战程序 ...
- Codeforces 888E - Maximum Subsequence(折半枚举(meet-in-the-middle))
888E - Maximum Subsequence 思路:折半枚举. 代码: #include<bits/stdc++.h> using namespace std; #define l ...
- Codeforces 912 E.Prime Gift (折半枚举、二分)
题目链接:Prime Gift 题意: 给出了n(1<=n<=16)个互不相同的质数pi(2<=pi<=100),现在要求第k大个约数全在所给质数集的数.(保证这个数不超过1e ...
- poj_3977 折半枚举
题目大意 给定N(N<=35)个数字,每个数字都<= 2^15. 其中一个或多个数字加和可以得到s,求出s的绝对值的最小值,并给出当s取绝对值最小值时,需要加和的数字的个数. 题目分析 需 ...
随机推荐
- UVALive-3263 That Nice Euler Circuit (几何欧拉定理)
https://vjudge.net/problem/UVALive-3263 平面上有一个n个端点的一笔画,第n个端点总是和第一个端点重合,因此图示一条闭合曲线. 组成一笔画的线段可以相交,但不会部 ...
- Parallel
介绍 C# 4.0 的新特性之并行运算 Parallel.For - for 循环的并行运算 Parallel.ForEach - foreach 循环的并行运算 Parallel.Invoke - ...
- 【BZOJ】1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列
[题意]给定n头牛,k个特色,给出每头牛拥有哪些特色的二进制对应数字,[i,j]平衡当且仅当第i~j头牛的所有特色数量都相等,求最长区间长度. [算法]平衡树+数学转化 [题解]统计前缀和sum[i] ...
- js 的function为什么可以添加属性
(1) function person(){ this.name = 'Tom'; } (2) function person(){} person.name = 'Tom'; (3) functio ...
- js_在原有的日期上添加天数输出添加后的日期
开始编码工作也有段时间了,想想没有留下点什么,有点遗憾.学到的一些经验,写写,分享一下.也给自己整理一下. 今天分享一下,在原有的日期上添加天数输出添加后的日期.开始做的时候,简单的思路是,直接用ne ...
- Xutils使用详解
刚开始的时候,在 GitHub 上面出现了一款强大的开源框架叫 xUtils,里面包含了很多实用的android工具,并且支持大文件上传,更全面的 http 请求协议支持(10种谓词),拥有更加灵活的 ...
- 【Linux学习】nohup后台运行程序以及输出重定向
Linux有两种命令使程序后台运行 第一种:支持后台运行,但是关闭终端的话,程序也会停止 command & 第二种:支持后台运行,关闭终端后,程序也会继续运行 nohup command & ...
- 【EverydaySport】健身笔记——背部训练
背部训练大致可以分为两种. 1 下拉式动作 躯干纵向上下位移的动作 典型代表 这样的下拉类动作 针对的是背阔肌 也就是两边像翅膀一样的部分 2 垂直于躯干的方向作用 向内拉 主要针对的是,背部的中部 ...
- 64_g6
gsettings-desktop-schemas-devel-3.24.0-1.fc26.x..> 22-Mar-2017 20:46 19386 gsf-sharp-0.8.1-27.fc2 ...
- 64_c1
CBFlib-0.9.5.15-3.fc26.i686.rpm 05-Feb-2017 21:55 427710 CBFlib-0.9.5.15-3.fc26.x86_64.rpm 05-Feb-20 ...