洛谷P3396 哈希冲突 (分块)
洛谷P3396 哈希冲突
题目背景
此题约为NOIP提高组Day2T2难度。
题目描述
众所周知,模数的hash会产生冲突。例如,如果模的数p=7,那么4和11便冲突了。
B君对hash冲突很感兴趣。他会给出一个正整数序列value[]。
自然,B君会把这些数据存进hash池。第value[k]会被存进(k%p)这个池。这样就能造成很多冲突。
B君会给定许多个p和x,询问在模p时,x这个池内数的总和。
另外,B君会随时更改value[k]。每次更改立即生效。
保证1<=p<n1<=p<n.
输入输出格式
输入格式:
第一行,两个正整数n,m,其中n代表序列长度,m代表B君的操作次数。
第一行,n个正整数,代表初始序列。
接下来m行,首先是一个字符cmd,然后是两个整数x,y。
若
cmd='A',则询问在模x时,y池内数的总和。若
cmd='C',则将value[x]修改为y。
输出格式:
对于每个询问输出一个正整数,进行回答。
输入输出样例
输入样例#1:
10 5
1 2 3 4 5 6 7 8 9 10
A 2 1
C 1 20
A 3 1
C 5 1
A 5 0
输出样例#1:
25
41
11
说明
样例解释
A 2 1的答案是1+3+5+7+9=25.
A 3 1的答案是20+4+7+10=41.
A 5 0的答案是1+10=11.
数据规模
对于10%的数据,有n<=1000,m<=1000.
对于60%的数据,有n<=100000.m<=100000.
对于100%的数据,有n<=150000,m<=150000.
保证所有数据合法,且1<=value[i]<=1000.
Solution
首先,思考暴力,对于询问,如下
for(int i=x;i<=n;i+=p) {
ans+=v[i];
}
然后由于数据水,暴力程序交上去91分?
#include<bits/stdc++.h>
#define rg register
#define il inline
#define Min(a,b) (a)<(b)?(a):(b)
#define Max(a,b) (a)>(b)?(a):(b)
#define lol long long
#define in(i) (i=read())
using namespace std;
int read() {
int ans=0,f=1; char i=getchar();
while(i<'0' || i>'9') {if(i=='-') f=-1; i=getchar();}
while(i>='0' && i<='9') ans=(ans<<1)+(ans<<3)+i-'0',i=getchar();
return ans*=f;
}
int n,m,v[2000010];
int main()
{
in(n),in(m);
for(rg int i=1;i<=n;i++) in(v[i]);
for(rg int i=1;i<=m;i++){
char op[5]; int x,y;
scanf("%s",op); in(x),in(y);
if(op[0]=='A') {
int ans=0;
for(int p=y;p<=n;p+=x) ans+=v[p];
cout<<ans<<endl;
}else v[x]=y;
}
}
再换种思路,假设对于一个数,我们怎么处理出它对答案的贡献呢?
我们可以开一个桶,只不过是二维的,\(sum[p][q]\)表示模数为\(p\),余数为\(q(q=i \mod\ p)\)的桶,这样
for(int i=1;i<=n;i++) {
for(int p=1;p<=n;i++)
sum[p][i%p]+=v[i];
}
这个预处理是\(O(n^2)\)的,查询虽然\(O(1)\),但是好像没什么用
其实是有的
我们可以分块
...
其实也是暴力....
分块本来就是稍微优雅那么一点的暴力
如果模数p>\(\sqrt n\),那么对于对于答案有贡献的是\(\lfloor\frac{n}{p}\rfloor<\sqrt n\),所以我们不如暴力统计
否则,\(O(1)\)查询即可
修改?也是只暴力更新\(p<\sqrt n\)的桶
Code
#include<bits/stdc++.h>
#define lol long long
#define in(i) (i=read())
using namespace std;
const int N=2e6;
int read() {
int ans=0,f=1; char i=getchar();
while(i<'0' || i>'9') {if(i=='-') f=-1; i=getchar();}
while(i>='0' && i<='9') ans=(ans<<1)+(ans<<3)+(i^48),i=getchar();
return ans*f;
}
int n,m,a[N],sum[1010][1010];
int main()
{
in(n),in(m); int blo=pow(n,0.33);
for(int i=1;i<=n;i++) in(a[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=blo;j++)
sum[j][i%j]+=a[i];
while(m--) {
char op[10];int x,y;
scanf("%s",op);in(x),in(y);
if(op[0]=='A') {
if(x<=blo) printf("%d\n",sum[x][y]);
else {
int ans=0;
for(int i=y;i<=n;i+=x) ans+=a[i];
printf("%d\n",ans);
}
}
else {
for(int i=1;i<=blo;i++)
sum[i][x%i]=sum[i][x%i]-a[x]+y;
a[x]=y;
}
}
}
博主蒟蒻,随意转载.但必须附上原文链接
http://www.cnblogs.com/real-l/
洛谷P3396 哈希冲突 (分块)的更多相关文章
- 洛谷 P3396 哈希冲突 解题报告
P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣.他会 ...
- 洛谷P3396 哈希冲突(分块)
传送门 题解在此,讲的蛮清楚的->这里 我就贴个代码 //minamoto #include<iostream> #include<cstdio> #include< ...
- 洛谷P3396 哈希冲突
分块还真是应用广泛啊...... 题意:求 解:以n0.5为界. 当p小于n0.5的时候,直接用p²大小的数组储存答案. 预处理n1.5,修改n0.5. 当p大于n0.5的时候,直接按照定义计算,复杂 ...
- 洛谷P3396哈希冲突
传送门啦 非常神奇的分块大法. 这个题一看数据范围,觉得不小,但是如果我们以 $ \sqrt(x) $ 为界限,数据范围就降到了 $ x < 400 $ 我们设数组 $ f[i][j] $ 表示 ...
- luogu P3396 哈希冲突(分块?)
我们可以维护一个\(f[i][j]\)代表%\(i\)意义下得\(j\)的答案.然后维护就炸了. 先设\(x=\sqrt{n}\)然后我们发现,当\(i>x\)时我们直接暴力复杂度为\(O(x) ...
- 莫队 [洛谷2709] 小B的询问[洛谷1903]【模板】分块/带修改莫队(数颜色)
莫队--------一个优雅的暴力 莫队是一个可以在O(n√n)内求出绝大部分无修改的离线的区间问题的答案(只要问题满足转移是O(1)的)即你已知区间[l,r]的解,能在O(1)的时间内求出[l-1, ...
- P3396 哈希冲突(思维+方块)
题目 P3396 哈希冲突 做法 预处理模数\([1,\sqrt{n}]\)的内存池,\(O(n\sqrt{n})\) 查询模数在范围里则直接输出,否则模拟\(O(m\sqrt{n})\) 修改则遍历 ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 洛谷P3935 Calculating(整除分块)
题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...
随机推荐
- 记一次Log4j2日志无法输出的 心酸史
问题描述:部分日志无法输出到日志文件中. 项目中的代码: @Resource private ConfigInfo configInfo; private static final Logger lo ...
- Python3 集合
1.集合的表示 集合是一个无序不重复的元素序列 创建空集合 set() 2.集合的运算 a={1,2,3} b={2,3,4} print(a-b) #a中包含b中不包含 print(a|b) #a中 ...
- Spring 3整合Quartz 2实现定时任务:动态添加任务
先展示一下后台管理定时任务效果图: 1.新增任务页面: 2.列表页(实现任务的禁用启用) 3.数据库脚本: -- ------------------------------ Table struct ...
- TensorFlow源码框架 杂记
一.为什么我们需要使用线程池技术(ThreadPool) 线程:采用“即时创建,即时销毁”策略,即接受请求后,创建一个新的线程,执行任务,完毕后,线程退出: 线程池:应用软件启动后,立即创建一定数量的 ...
- [git]基本用法1
一.实验说明 本节实验为 Git 入门第一个实验,可以帮助大家熟悉如何创建和使用 git 仓库. 二.git的初始化 在使用git进行代码管理之前,我们首先要对git进行初始化. 1.Git 配置 使 ...
- 团队组队&灰化肥挥发会发黑
1. 队伍展示 (1. 队名: 灰化肥挥发会发黑 (2. 队员风采 苏叶潇(队长) 201521123114 与众不同,擅长软件测试,对编程望而却步,希望成为测试人员. 宣言:不求最好,只求更好. 李 ...
- 2-c语言作业1
#include<stdio.h> #include<math.h> int main(void) { int money,year; double rate,sun; pri ...
- 手把手教你写Kafka Streams程序
本文从以下四个方面手把手教你写Kafka Streams程序: 一. 设置Maven项目 二. 编写第一个Streams应用程序:Pipe 三. 编写第二个Streams应用程序:Line Split ...
- 【Linux】- CentOS查看IP
1.查询命令: ip addr 显示如图: 可以看到ens33没有inet这个属性,那么就没办法通过IP远程连接. 2.设置配置文件: vi /etc/sysconfig/network-script ...
- phpcms添加自定义字段
设置 :后台 --- 内容 ---- 模型管理 ---- 对应的模型 --- 字段管理 新增加自定义字段:phpcms123 调用新增字段代码: {pc:content action=&qu ...