CodeForces 185A. Plant (矩阵快速幂)

题意分析

求解N年后,向上的三角形和向下的三角形的个数分别是多少。如图所示:

N=0时只有一个向上的三角形,N=1时有3个向上的三角形,1个向下的三角形,N=2,有10个向上的三角形和6个向下的三角形。

根据递推关系,设an为第N年向上的三角形个数,bn为第N年向下的三角形个数、初始条件为 a0 = 1, b0 = 0;

递推关系式:

an = 3an-1 + bn-1

bn = 3bn-1 + an-1

可以构造出一下矩阵

然后用矩阵快速幂即可。

代码总览

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <sstream>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#define INF 0x3f3f3f3f
#define nmax 200
#define MEM(x) memset(x,0,sizeof(x))
using namespace std;
const int Dmax = 11;
int N = 2;
long long MOD;
typedef struct{
long long matrix[Dmax][Dmax];
void init()
{
memset(matrix,0,sizeof(matrix));
for(int i = 0; i<Dmax;++i) matrix[i][i] = 1;
}
}MAT; MAT ADD(MAT a, MAT b)
{
for(int i = 0; i<N;++i){
for(int j = 0;j<N;++j){
a.matrix[i][j] +=b.matrix[i][j];
a.matrix[i][j] %= MOD;
}
}
return a;
}
MAT MUL(MAT a, MAT b)
{
MAT ans;
for(int i = 0; i<N;++i){
for(int j = 0; j<N;++j){
ans.matrix[i][j] = 0;
for(int k = 0; k<N;++k){
ans.matrix[i][j] += ( (a.matrix[i][k]) * (b.matrix[k][j]) ) % MOD;
}
ans.matrix[i][j] %= MOD;
}
}
return ans;
}
MAT POW(MAT a, long long t)
{
MAT ans; ans.init();
while(t){
if(t&1) ans = MUL(ans,a);
t>>=1;
a = MUL(a,a);
}
return ans;
}
void OUT(MAT a)
{
for(int i = 0; i<N;++i){
for(int j = 0; j<N;++j){
printf("%5I64d",a.matrix[i][j]);
}
printf("\n");
}
}
void IN(MAT & a,MAT & ini)
{
memset(a.matrix,0,sizeof(a.matrix));
memset(ini.matrix,0,sizeof(ini.matrix));
ini.matrix[0][0] = 1;
ini.matrix[1][0] = 0;
a.matrix[0][0] = a.matrix[1][1] = 3;
a.matrix[0][1] = a.matrix[1][0] = 1;
}
void CAL(MAT a)
{
printf("%I64d\n",a.matrix[0][0] % MOD);
}
int main()
{
//freopen("in.txt","r",stdin);
long long n;MOD = 1000000007;
while(scanf("%I64d",&n) != EOF){
MAT temp,ini;
IN(temp,ini);
temp = POW(temp,n);
temp = MUL(temp,ini);
CAL(temp);
}
return 0;
}

CodeForces 185A. Plant (矩阵快速幂)的更多相关文章

  1. Codeforces - 185A 简单矩阵快速幂

    题意:求第n个三角形内部的上三角形个数 对每个三角形分别维护上下三角形个数,记为\(dp[1][i],dp[2][i]\) 规律很明显是 \(dp[1][i+1]=3*dp[1][i]+dp[2][i ...

  2. codeforces 691E Xor-sequences 矩阵快速幂

    思路:刚开始 n个元素,a[i][j]代表以i开头,j结尾的二元组符合条件的有多少 这是等于长度为2的数量 长度为3的数量为a*a,所以长度为n的数量是a^(k-1) 然后就是矩阵快速幂,然而我并不能 ...

  3. CodeForces 450B (矩阵快速幂模板题+负数取模)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N ...

  4. Plant 矩阵快速幂,,,,有点忘了

    题目链接:https://codeforces.com/contest/185/problem/A 题目大意就是求n次以后  方向朝上的三角形的个数 以前写过这个题,但是忘了怎么做的了,,,又退了一遍 ...

  5. Codeforces 185A Plant( 递推关系 + 矩阵快速幂 )

    链接:传送门 题意:输出第 n 年向上小三角形的个数 % 10^9 + 7 思路: 设 Fn 为第 n 年向上小三角形的个数,经过分析可以得到 Fn = 3 * Fn-1 + ( 4^(n-1) - ...

  6. Educational Codeforces Round 13 D. Iterated Linear Function (矩阵快速幂)

    题目链接:http://codeforces.com/problemset/problem/678/D 简单的矩阵快速幂模版题 矩阵是这样的: #include <bits/stdc++.h&g ...

  7. Codeforces Round #257 (Div. 2) B. Jzzhu and Sequences (矩阵快速幂)

    题目链接:http://codeforces.com/problemset/problem/450/B 题意很好懂,矩阵快速幂模版题. /* | 1, -1 | | fn | | 1, 0 | | f ...

  8. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

  9. Codeforces Round #536 (Div. 2) F 矩阵快速幂 + bsgs(新坑) + exgcd(新坑) + 欧拉降幂

    https://codeforces.com/contest/1106/problem/F 题意 数列公式为\(f_i=(f^{b_1}_{i-1}*f^{b_2}_{i-2}*...*f^{b_k} ...

随机推荐

  1. python 水仙花

    #简单def narcissus(): for n in range(100, 1000, 1): a, b, c = n//100, (n//10)%10, (n%100)%10 if a ** 3 ...

  2. TW实习日记:第16天

    前端的样式bug实在是太太太莫名其妙了,尤其是封装好的组件,一层套一层的,根本不知道是哪一层出了问题...除了改bug就是做新功能,真想吐槽一下这个项目的留言板,根本没人会用吧...这功能实在是太老旧 ...

  3. [Clr via C#读书笔记]Cp4类型基础

    Cp4类型基础 Object类型 Object是所有类型的基类,有Equals,GetHashCode,ToString,GetType四个公共方法,其中GetHashCode,ToString可以o ...

  4. Python基础 之 文件操作

    文件操作 一.路径 文件绝对路径:d:\python.txt 文件相对路径:在IDEA左边的文件夹中 二.编码方式 utf-8 gbk... 三.操作方式 1.只读 r 和 rb 绝对路径的打开操作 ...

  5. sql server存储特殊字符解决办法

    好久没来院子了,最近在学java了,再加上项目比较紧,最近都没怎么上,其实这几天在项目中学到不少东西,都能写下来,但是久而久之就忘了,还是得养成及时总结的好习惯啊,还有有时间一定要把那个小项目整理下来 ...

  6. Logistic回归和SVM的异同

    这个问题在最近面试的时候被问了几次,让谈一下Logistic回归(以下简称LR)和SVM的异同.由于之前没有对比分析过,而且不知道从哪个角度去分析,一时语塞,只能不知为不知. 现在对这二者做一个对比分 ...

  7. C语言链接数据库

    一.解释一下函数功能和用法 1.mysql_real_connect 函数原型:MYSQL *mysql_real_connect(MYSQL *mysql, const char *host, co ...

  8. Java程序员自我介绍

    有关Java程序员的面试自我介绍范文(一) 我叫XXX,今年21岁,毕业于XX解放军信息工程大学计算机科学与技术专业,拥有扎实的Core Java基础,良好的编程风格;熟悉JSP+Servlet+Ja ...

  9. Train Problem(栈的应用)

    Description As the new term comes, the Ignatius Train Station is very busy nowadays. A lot of studen ...

  10. java日期格式处理

    继承关系:java.lang.Object->java.text.Format->java.text.DateForm->java.text.SimpleDateFormat 日期代 ...