bzoj2431: [HAOI2009]逆序对数列(DP)
f[i][j]前i个数有j个逆序对的数量
f[i][j]=sigma(f[i-1][j-k]){1<=k<=i}
维护一个前缀和即可
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=,mod=1e4;
int n,k;
int f[maxn][maxn],sum[maxn];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
inline int MOD(int x){return x>=mod?x-mod:x;}
int main()
{
read(n);read(k);
f[][]=;
for(int i=;i<=n;i++)
for(int j=;j<=min(i*(i-)>>,k);j++)
{
sum[j]=MOD((j?sum[j-]:)+f[i-][j]);
f[i][j]=MOD(sum[j]-sum[j-i]+mod);
}
printf("%d\n",f[n][k]);
return ;
}
bzoj2431: [HAOI2009]逆序对数列(DP)的更多相关文章
- BZOJ2431:[HAOI2009]逆序对数列(DP,差分)
Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...
- [bzoj2431][HAOI2009][逆序对数列] (dp计数)
Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...
- [BZOJ2431][HAOI2009]逆序对数列(DP)
从小到大加数,根据加入的位置转移,裸的背包DP. #include<cstdio> #include<cstring> #include<algorithm> #d ...
- BZOJ2431 HAOI2009 逆序对数列 【DP】*
BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai,如果有i<j且ai>aja_i>a_jai>aj,那么我们称aia ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列
http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...
- 【bzoj2431】[HAOI2009]逆序对数列 dp
题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这 ...
- bzoj2431: [HAOI2009]逆序对数列
dp. f[i][j]表示放置第i个数有j个逆序对的方案数. s[i][j]维护前缀和(f[i][0]~f[i][j]). 状态转移方程 f[i][j]=s[i-1][j]-s[i-1][max(j- ...
随机推荐
- WPF & EF & Prism useful links
Prism Attributes for MEF https://msdn.microsoft.com/en-us/library/ee155691%28v=vs.110%29.aspx Generi ...
- 「日常训练」Kefa and Dishes(Codeforces Round #321 Div. 2 D)
题意与分析(CodeForces 580D) 一个人有\(n\)道菜,然后要点\(m\)道菜,每道菜有一个美味程度:然后给你了很多个关系,表示如果\(x\)刚好在\(y\)前面做的话,他的美味程度就会 ...
- Java异常层次结构
1. 如果是不可查异常(unchecked exception),即Error.RuntimeException或它们的子类,那么可以不使用throws关键字来声明要抛出的异常,编译仍能顺利通过,但在 ...
- 日历(Calendar)模块
#usr/bin/python3 #! -*-conding : utf-8 -*- #2018.3.14 """ 日历(Calendar)模块 此模块的函数都是日历相关 ...
- Windows环境下使用kafka单机模式
测试运行环境 Win10 kafka_2.11-1.0.0 zookeeper-3.4.10 1.安装Zookeeper Kafka的运行依赖于Zookeeper,所以在运行Kafka之前我们需要安装 ...
- spring boot 下使用@ConponentScan注解遇到的问题
问题描述 如果你心急看结果,请直接到本文末尾 今天使用了注解操作spring boot,一开始程序无法启动,提示无法找到一个注解注入的类,查询网上,有人说使用@ConponetScan注解,可以指定需 ...
- 使用深度学习来破解 captcha 验证码(转)
使用深度学习来破解 captcha 验证码 本项目会通过 Keras 搭建一个深度卷积神经网络来识别 captcha 验证码,建议使用显卡来运行该项目. 下面的可视化代码都是在 jupyter not ...
- 自测之Lesson15:TCP&UDP网络编程
题目:编写一个TCP通信的程序. 实现代码: #include <stdio.h> #include <sys/socket.h> #include <unistd.h& ...
- iOS-UISearchController用法
import "ViewController.h" @interface ViewController ()<UITableViewDelegate,UITableViewD ...
- <Effective C++>读书摘要--Inheritance and Object-Oriented Design<一>
1.Furthermore, I explain what the different features in C++ really mean — what you are really expres ...