洛谷P3038 牧草种植 [树链剖分]
牧草种植
题目描述
Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional roads, such that there is exactly one path between any two pastures. Bessie, a cow who loves her grazing time, often complains about how there is no grass on the roads between pastures. Farmer John loves Bessie very much, and today he is finally going to plant grass on the roads. He will do so using a procedure consisting of M steps (1 <= M <= 100,000).
At each step one of two things will happen:
FJ will choose two pastures, and plant a patch of grass along each road in between the two pastures, or,
Bessie will ask about how many patches of grass on a particular road, and Farmer John must answer her question.
Farmer John is a very poor counter -- help him answer Bessie's questions!
给出一棵n个节点的树,有m个操作,操作为将一条路径上的边权加一或询问某条边的权值。
输入输出格式
输入格式:
* Line 1: Two space-separated integers N and M
* Lines 2..N: Two space-separated integers describing the endpoints of a road.
* Lines N+1..N+M: Line i+1 describes step i. The first character of the line is either P or Q, which describes whether or not FJ is planting grass or simply querying. This is followed by two space-separated integers A_i and B_i (1 <= A_i, B_i <= N) which describe FJ's action or query.
输出格式:
* Lines 1..???: Each line has the answer to a query, appearing in the same order as the queries appear in the input.
输入输出样例
4 6
1 4
2 4
3 4
P 2 3
P 1 3
Q 3 4
P 1 4
Q 2 4
Q 1 4
2
1
2
分析:
题目翻译还是不够好,容易让人误解。
题目大意是,给你一棵树,初始边权值均为0。有两种操作,一种是把x到y之间的最短路径上的每一条边权+1,另一种是询问x到y之间的最短路径边权和。
很明显的树剖。但是题目中的操作都是在边上进行的,所以要转换成点操作。因为一个父节点可能有多个子节点,而子节点只有一个父节点,所以可以直接把边权赋给子节点,这样就方便操作了。那后面就是树剖模板了。
但是要注意一些小细节,换成点操作后,询问和修改时顶端的点都不要操作,否则就会有冗余边权。
Code(比较模板的代码风格,将就着看吧):
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+;
int n,m,dfn[N],num[N],id,fa[N];
int head[N],cnt,top[N],size[N];
int dep[N],hson[N],root,dg[N];
int seg[N<<],sign[N<<];
struct Node{int to,next;}edge[N<<];
inline int read()
{
char ch=getchar();int num=;bool flag=false;
while(ch<''||ch>''){if(ch=='-')flag=true;ch=getchar();}
while(ch>=''&&ch<=''){num=num*+ch-'';ch=getchar();}
return flag?-num:num;
}
inline void add(int x,int y)
{
edge[++cnt].to=y;
edge[cnt].next=head[x];
head[x]=cnt;
}
inline void dfs1(int u)
{
size[u]=;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].to;
if(v==fa[u])continue;
dep[v]=dep[u]+;fa[v]=u;
dfs1(v);size[u]+=size[v];
if(size[v]>size[hson[u]])
hson[u]=v;}
}
inline void dfs2(int u,int now)
{
dfn[++id]=u;num[u]=id;top[u]=now;
if(!hson[u])return;dfs2(hson[u],now);
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].to;
if(v==fa[u]||v==hson[u])continue;
dfs2(v,v);}
}
inline void pushup(int rt)
{seg[rt]=seg[rt<<]+seg[rt<<|];}
inline void pushdown(int l,int r,int rt)
{
if(!sign[rt])return;
int mid=(l+r)>>;
seg[rt<<]+=sign[rt]*(mid-l+);
seg[rt<<|]+=sign[rt]*(r-mid);
sign[rt<<]+=sign[rt];
sign[rt<<|]+=sign[rt];
sign[rt]=;
}
inline void build(int l,int r,int rt)
{
if(l>r)return;
if(l==r){seg[rt]=;return;}
int mid=(l+r)>>;
build(l,mid,rt<<);
build(mid+,r,rt<<|);
pushup(rt);
}
inline void update(int l,int r,int rt,int L,int R,int C)
{
if(l>R||r<L)return;
if(L<=l&&r<=R){
seg[rt]+=C*(r-l+);
sign[rt]+=C;return;}
int mid=(l+r)>>;
pushdown(l,r,rt);
if(L<=mid)update(l,mid,rt<<,L,R,C);
if(R>mid)update(mid+,r,rt<<|,L,R,C);
pushup(rt);
}
inline int quary(int l,int r,int rt,int L,int R)
{
if(l>R||r<L)return ;
if(L<=l&&r<=R){return seg[rt];}
int mid=(l+r)>>;int ret=;
pushdown(l,r,rt);
if(L<=mid)ret+=quary(l,mid,rt<<,L,R);
if(R>mid)ret+=quary(mid+,r,rt<<|,L,R);
return ret;
}
inline void plant(int x,int y)
{
int fax=top[x],fay=top[y];
while(fax!=fay){
if(dep[fax]<dep[fay]){
swap(fax,fay);swap(x,y);}
update(,n,,num[fax],num[x],);
x=fa[fax];fax=top[x];}
if(x!=y){if(dep[x]>dep[y])swap(x,y);
update(,n,,num[x]+,num[y],);}
}
inline int get(int x,int y)
{
int fax=top[x],fay=top[y];int ret=;
while(fax!=fay){
if(dep[fax]<dep[fay]){
swap(fax,fay);swap(x,y);}
ret+=quary(,n,,num[fax],num[x]);
x=fa[fax];fax=top[x];}
if(x!=y){if(dep[x]>dep[y])swap(x,y);
ret+=quary(,n,,num[x]+,num[y]);}
return ret;
}
int main()
{
n=read();m=read();
int x,y,maxx=-;char op[];
memset(head,-,sizeof(head));
for(int i=;i<n;i++){
x=read();y=read();
add(x,y);add(y,x);
dg[x]++;dg[y]++;}
for(int i=;i<=n;i++)
if(maxx<dg[i])maxx=dg[i],root=i;
dep[root]=;fa[root]=;
dfs1(root),dfs2(root,root);
build(,n,);
for(int i=;i<=m;i++){
scanf("%s",op);
x=read();y=read();
if(op[]=='P'){
plant(x,y);}
else
printf("%d\n",get(x,y));}
return ;
}
洛谷P3038 牧草种植 [树链剖分]的更多相关文章
- BZOJ2243 洛谷2486 [SDOI2011]染色 树链剖分
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2243 题目传送门 - 洛谷2486 题意概括 一棵树,共n个节点. 让你支持以下两种操作,共m次操 ...
- 洛谷P3313 [SDOI2014]旅行(树链剖分 动态开节点线段树)
题意 题目链接 Sol 树链剖分板子 + 动态开节点线段树板子 #include<bits/stdc++.h> #define Pair pair<int, int> #def ...
- 洛谷P3038 牧草种植Grass Planting
思路: 首先,这道题的翻译是有问题的(起码现在是),查询的时候应该是查询某一条路径的权值,而不是某条边(坑死我了). 与平常树链剖分题目不同的是,这道题目维护的是边权,而不是点权,那怎么办呢?好像有点 ...
- 洛谷P3459 [POI2007]MEG-Megalopolis [树链剖分]
题目传送门 MEG 题目描述 Byteotia has been eventually touched by globalisation, and so has Byteasar the Postma ...
- 洛谷 P3950 部落冲突 树链剖分
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例1 输出样例1 输入样例2 输出样例2 输入样例3 输出样例3 说明 思路 AC代码 总结 题面 题目链接 P3 ...
- 洛谷 P2486 [SDOI2011]染色 树链剖分
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例: 输出样例: 说明 思路 PushDown与Update Q AC代码 总结与拓展 题面 题目链接 P2486 ...
- 洛谷 P4211 [LNOI2014]LCA (树链剖分+离线)
题目:https://www.luogu.org/problemnew/solution/P4211 相当难的一道题,其思想难以用言语表达透彻. 对于每个查询,区间[L,R]中的每个点与z的lca肯定 ...
- 洛谷P4114 Qtree1(树链剖分+线段树)
传送门 LCT秒天秒地用什么树剖 这题可以算是树剖的比较裸的题目了 把每一条边的权值下放到他两边的点中深度较深的那个 然后直接用树剖+线段树带进去乱搞就可以了 //minamoto #include& ...
- 洛谷$P4211\ [LNOI2014]\ LCA$ 树链剖分+线段树
正解:树剖+线段树 解题报告: 传送门$QwQ$ 看到$dep[lca]$啥的就想到之前托腮腮$CSP$模拟$D1T3$的那个套路,,, 然后试下这个想法,于是$dep[lca(x,y)]=\sum_ ...
随机推荐
- Inner join case when
SELECT ( ), wn.ActualWorkflowNumber) + ' ' + wi.SN ) AS SN , wi.RecordID , wi.WorkflowName , wc.Work ...
- 【Foreign】K优解 [堆]
K优解 Time Limit: 20 Sec Memory Limit: 512 MB Description 给定n个行数,每行m个.在每行中选出一个数来,求出前 k 小的异或和. Input 第 ...
- 正则表达式实现将html文本转换为纯文本格式(将html字符串转换为纯文本方法)
Regex regex = new Regex("<.+?>", RegexOptions.IgnoreCase); string strOutput = regex. ...
- python学习笔记(二)之python简单实践
1 安装python开发环境 Linux环境下自动安装好了python,可以通过以下命令更新到python最新版本. #echo "alias python=/usr/bin/python3 ...
- Frogs' Neighborhood(POJ1659+Havel-Hakimi定理)
题目链接:http://poj.org/problem?id=1659 题目: 题意:根据他给你的每个点的度数构造一张无向图. 思路:自己WA了几发(好菜啊……)后看到discuss才知道这个要用Ha ...
- MongoDB 数据库(1)
数据库 MongoDB (芒果数据库) 数据存储阶段 文件管理阶段 (.txt .doc .xls) 优点 : 数据可以长期保存 可以存储大量的数据 使用简单 缺点 : 数据一致性差 数据查找修改不方 ...
- 64_g1
GAPDoc-1.5.1-12.fc26.noarch.rpm 13-Feb-2017 22:37 1082286 GAPDoc-latex-1.5.1-12.fc26.noarch.rpm 13-F ...
- redis cluster 实现
Redis cluster是一个redis官方提供的集群功能,集群节点最小3个节点,配置比较多,记录下来,以供下次使用.我在这使用的redis 4.0.6. 因为最新的ruby redis扩展需要ru ...
- FineReport——插入行策略
1.空值是默认的选项,即每次插入新行时,格子都是空白的. 2.原值即单元格中原有内容是什么,就复制到新增的格子中,一般适用于单元格是使用公式定义的, 在插入单元格时,公式会保留下来. 3.默认值即通过 ...
- 【Android开发日记】之基础篇(一)——TextView+SpannableStringBuilder
TextView是控件中最最基础的一个控件,也是最简单的一个控件.但如果仅此,我不会专门为TextView写一篇文章.最近发现了Android中有趣的一个类,那就是标题上写的SpannableStri ...