POJ 1845 Sumdiv (整数唯一分解定理)
题目链接
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 25841 | Accepted: 6382 |
Description
Input
Output
Sample Input
2 3
Sample Output
15
Hint
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
题意:
求A^B的约数和。
题解:
(1)整数唯一分解定理:
任意一个整数都可以写成素数相乘的形式
A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 其中pi均为素数
(2)约数:
S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn);
(3)逆元:
a/b%mod = (a%b*mod)/b;
(4) 快速幂。
有了以上基础,最终:
A^B的所有约数之和为:
sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].
代码:
#include <cstdio> #include <cstring> #include <cmath> #include <iostream> #include <queue> #include <map> #include <list> #include <utility> #include <set> #include <algorithm> #include <deque> #include <vector> #define mem(arr,num) memset(arr,0,sizeof(arr)) #define _for(i, a, b) for(int i = a; i <= b; i++) #define __for(i, a, b) for(int i = a; i >=b; i--) #define IO ios::sync_with_stdio(false);\ cin.tie();\ cout.tie(); using namespace std; typedef long long ll; typedef vector<int > vi; const ll INF = 0x3f3f3f3f; ; + ; bool vis[N]; int prime[N],num; void getprime() { _for(i, , N){ if(!vis[i]) prime[++num] = i; ; j <= num && i * prime[j] <= N; j++){ vis[i * prime[j]] = true; ) break; } } } /* ll quick_pow(ll a, ll b, ll m) { ll ret = 1; a %= m; while(b) { if(b & 1) ret = (ret * a) % m; b >>= 1; a = (a * a) % m; } return ret; } 有可能爆long long; */ ll quick_pow1(ll a, ll b, ll m){ ll ret = ; a %= m; while(b) { ) ret = (ret + a) % m; b >>= ; a = (a + a) % m; } return ret; } ll quick_pow(ll a, ll b, ll m){ ll ret = ; while(b) { ) ret = quick_pow1(ret,a,m); a = quick_pow1(a,a,m); b >>= ; } return ret; } int main() { ll A, B, ans = ; getprime(); cin >> A >> B; ; prime[i] * prime[i] <= A; i++){ ; ){ ){ cnt++; A /= prime[i]; } // a/b%c = (a%b*c/b) ll M = (prime[i] - ) * mod; ans *= (quick_pow(prime[i], cnt * B +, M) + M - )/(prime[i] - ); ans %= mod; } } ){ ll M = (A - ) * mod; ans *= (quick_pow(A, B +, M) + M - )/(A - ); ans %= mod; } cout << ans << endl; ; }
POJ 1845 Sumdiv (整数唯一分解定理)的更多相关文章
- poj 1845 POJ 1845 Sumdiv 数学模板
筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...
- POJ 1845-Sumdiv(快速幂取模+整数唯一分解定理+约数和公式+同余模公式)
Sumdiv Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u Submit Statu ...
- POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]
传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...
- POJ 1845 Sumdiv(逆元)
题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点 1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...
- poj 1845 Sumdiv (等比求和+逆元)
题目链接:http://poj.org/problem?id=1845 题目大意:给出两个自然数a,b,求a^b的所有自然数因子的和模上9901 (0 <= a,b <= 50000000 ...
- poj 1845 Sumdiv (数论)
题目链接 题意:求 A^B的所有约数之和对9901取模后的结果. 分析: 看了小优的博客写的. 分析来自 http://blog.csdn.net/lyy289065406/article/detai ...
- poj 1845 Sumdiv(约数和,乘法逆元)
题目: 求AB的正约数之和. 输入: A,B(0<=A,B<=5*107) 输出: 一个整数,AB的正约数之和 mod 9901. 思路: 根据正整数唯一分解定理,若一个正整数表示为:A= ...
- POJ 1845 Sumdiv (整数拆分+等比快速求和)
当我们拆分完数据以后, A^B的所有约数之和为: sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*[1+pn+pn^2 ...
- poj 1845 Sumdiv 约数和定理
Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...
随机推荐
- 寻找最大连续子序列/Find the max contiguous subsequence
寻找最大连续子序列 给定一个实数序列X1,X2,...Xn(不需要是正数),寻找一个(连续的)子序列Xi,Xi+1,...Xj,使得其数值之和在所有的连续子序列数值之和中为最大. 一般称这个子序列为最 ...
- 疯狂java学习笔记
面向对象: 从现实世界中客观存在的事物(对象)出发构造软件系统,并在软件系统构造中运用人类的自然思维方式,强调直接以现实世界中的事物为中心来思考,认识问题,并根据这些事务的本质特点,将他们抽象为系统中 ...
- 使用MyBatis查询 返回类型为int,但是当查询结果为空NULL,报异常的解决方法
使用MyBatis查询 返回类型为int,但是当查询结果为空NULL,会报异常. 例如: <select id="getPersonRecordId" parameterTy ...
- 外观模式(Facde)【设计模式】
定义:为子系统中的一组接口提供一个一致的界面,Fcade模式定义了一个高层接口,这个接口使得这一子系统更加容易使用. “外观模式(Facade pattern),是软件工程中常用的一种软件设计模式,它 ...
- 【CODEVS】1281 Xn数列
[算法]矩阵快速幂 [题解]T*A(n-1)=A(n)矩阵如下: a 1 * x(n-1) 0 = xn 0 0 1 c 0 c 0 防止溢出可以用类似快速幂的快速乘. ...
- js获取屏幕高度宽度
获取各种屏幕的宽度和高度Javascript: 网页可见区域宽: document.body.clientWidth网页可见区域高: document.body.clientHeight网页可见区域宽 ...
- vue实现微信对话
因为项目中需要实现仿微信对话功能,于是抽空实现了下,主要是h5的canvas的把图片和文字绘制到画布上 原文来自我的个人博客:http://lvhww.com/index.php/archives/6 ...
- 函数getopt()及其参数optind -- (转)
getopt被用来解析命令行选项参数 #include <unistd.h> extern char *optarg; //选项的参数指针 extern int ...
- 解决不走onActivityResult方法
最近在开发公司项目,在使用startActivityForResult关联俩个Activity中,发现A跳转到B,B设置setResult之后,A没有执行onActivityResult,查找一下,发 ...
- windows 上启动appium
import org.apache.commons.exec.CommandLine; import org.apache.commons.exec.DefaultExecuteResultHandl ...