BZOJ 1786 配对(DP)
如果我们直接令dp[i][j]为前i个位置第i个位置填j所产生的逆序对的最少数。这样是不满足无后效性的。
但是如果发现对于两个-1,如果前面的-1填的数要大于后面的-1填的数。容易证明把他们两交换结果不会变差。
所以对于所有的-1,填的数一定是一个非递减的。
现在我们考虑每个位置对答案的贡献。显然数字位和数字位的逆序对数可以预处理一次算出来。
而-1位和-1位的逆序对数是0,剩下的就是数字位和-1位的逆序对数。
考虑dp[i][j]为前i个-1位 第i个-1位填j时产生的逆序对的最少数。这样是没有后效的。有dp[i][j]=min(dp[i][k])+f[j]+t[j].(k<=j).
f[j]表示第i个-1位填j和前面的数字位产生的逆序对总数。t[j]表示第i个-1位填j和后面的数字位产生的逆序对总数。这两个数组可以在一次O(nk)的预处理完成。
dp的复杂度是O(nk).所以总复杂度是O(nk).
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi 3.1415926535
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int a[N], res, f[N][], t[N][], dp[N][], mi[N][]; int main ()
{
int n, k, ans=INF;
scanf("%d%d",&n,&k);
FOR(i,,n) scanf("%d",a+i);
FOR(i,,k) FOR(j,,n) {
if (j>&&a[j-]==-) f[j][i]=f[j-][i];
else if (j>&&a[j-]!=-) f[j][i]=f[j-][i]+(i<a[j-]);
}
FOR(i,,k) for (int j=n; j>=; --j) {
if (j<n&&a[j+]==-) t[j][i]=t[j+][i];
else if (j<n&&a[j+]!=-) t[j][i]=t[j+][i]+(i>a[j+]);
}
int pos=;
FOR(i,,n) {
if (a[i]!=-) {res+=f[i][a[i]]; continue;}
++pos;
FOR(j,,k) {
dp[pos][j]=mi[pos-][j]+f[i][j]+t[i][j];
if (j>) mi[pos][j]=min(dp[pos][j],mi[pos][j-]);
else mi[pos][j]=dp[pos][j];
}
}
FOR(j,,k) ans=min(ans,dp[pos][j]);
printf("%d\n",ans+res);
return ;
}
BZOJ 1786 配对(DP)的更多相关文章
- BZOJ 1237 配对(DP)
给出两个长度为n的序列.这两个序列的数字可以连边当且仅当它们不同,权值为它们的绝对值,求出这个二分图的最小权值完全匹配.没有输出-1. n<=1e5.用KM会TLE+MLE. 如果连边没有限制的 ...
- BZOJ 1786 DP
思路: 肯定从小往大填合适了 f[i][j]表示第i个数是j的最少逆序对数 f[i][j]=min(f[i-1][k]+cost,f[i][j]) 优化一下成O(nk)就好啦~ (不优化也可以过的-) ...
- BZOJ 1237 配对
Description 你有\(n\)个整数\(A_{i}\)和\(n\)个整数\(B_{i}\).你需要把它们配对,即每个\(A_{i}\)恰好对应一 个\(Bp_{i}\).要求所有配对的整数差的 ...
- BZOJ.2655.calc(DP/容斥 拉格朗日插值)
BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...
- 洛谷P2507 [SCOI2008]配对 [DP,贪心]
题目传送门 配对 题目描述 你有 n 个整数Ai和n 个整数Bi.你需要把它们配对,即每个Ai恰好对应一个Bp[i].要求所有配对的整数差的绝对值之和尽量小,但不允许两个相同的数配对.例如A={5,6 ...
- 【BZOJ1786】[Ahoi2008]Pair 配对 DP
[BZOJ1786][Ahoi2008]Pair 配对 Description Input Output Sample Input 5 4 4 2 -1 -1 3 Sample Output 4 题解 ...
- BZOJ 3270 && BZOJ 1778 (期望DP && 高斯消元)
BZOJ 3270 :设置状态为Id(x,y)表示一人在x,一人在y这个状态的概率. 所以总共有n^2种状态. p[i]表示留在该点的概率,Out[i]=(1-p[i])/Degree[i]表示离开该 ...
- BZOJ 1040 树形DP+环套树
就是有n个点n条边,那么有且只有一个环那么用Dfs把在环上的两个点找到.然后拆开,从这条个点分别作树形Dp即可. #include <cstdio> #include <cstrin ...
- bzoj 3851: 2048 dp优化
3851: 2048 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 22 Solved: 9[Submit][Status] Description T ...
随机推荐
- 20145207 myeclipse测试
实验博客
- 实现动态的XML文件读写操作(依然带干货)
前言 最近由于项目需求,需要读写操作XML文件,并且存储的XML文件格式会随着导入的数据不同而随时改变(当然导入的数据还是有一定约束的),这样我们要预先定义好XML文件的格式就不太现实了,如何实现不管 ...
- 机器学习实战:KNN代码报错“AttributeError: 'dict' object has no attribute 'iteritems'”
报错代码: sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) 解决 ...
- 「日常训练&知识学习」莫队算法(二):树上莫队(Count on a tree II,SPOJ COT2)
题意与分析 题意是这样的,给定一颗节点有权值的树,然后给若干个询问,每次询问让你找出一条链上有多少个不同权值. 写这题之前要参看我的三个blog:Codeforces Round #326 Div. ...
- Git一分钟系列--快速安装git客户端
在项目开发过程中,几乎所有公司都会用到版本控制工具来管理自己的项目资源文件,比如Git,SVN. 什么是svn? 版本控制软件,通过svn来实现版本控制首先需要搭建一个服务器,在服务器上创建仓库保存项 ...
- Java开发工程师(Web方向) - 02.Servlet技术 - 第4章.JSP
第4章--JSP JSP JSP(Java Server Pages) - 中文名:Java服务器页面 动态网页技术标准 JSP = Html + Java + JSP tags 在服务器端执行,返回 ...
- 【token接口】-jmeter
token 接口 3步骤 1.登录接口 2.提取登录接口的token 3.http 信息管理头 把提取的cookie传入 就可以了
- IMPI Python集群运行报错:
Intel MPI环境利用hostfile多主机运行下报错 HYDU_process_mfile_token (../../utils/args/args.c:523): token slots no ...
- "Generative Adversarial Nets" Notes
- Ian J.Goodfellow 中文翻译:https://blog.csdn.net/wspba/article/details/54577236 代码实现:https://github.com ...
- 1.安装CDH5.12.x
安装方式安装前准备安装步骤安装过程修改/etc/hosts设置ssh 互信修改linux 系统设置安装JDK1.8安装python2.7安装mysql/postgreysql数据库安装ntp设置本地y ...